Выбрать главу

Его утолщенная центральная часть, немного похожая на звезду и часто имеющая форму редиски, называется телом( сомой) нейрона и содержит в себе клеточное ядро. С одной стороны от тела нейрона отходит сильно вытянутое нервное волокно, называемое аксоном. Аксон иногда достигает действительно огромной длины (у человека — часто до нескольких сантиметров), если учесть, что речь идет всего лишь об одной микроскопической клетке.

Аксон служит «проводом», по которому передается исходящий из клетки нервный сигнал. От аксона в стороны могут отходить более мелкие ветви и, кроме того, аксон может несколько раз разветвляться. На концах каждого из этих нервных волокон находятся нервные окончания( терминали). По другую сторону сомы, а часто и отходя от нее во всех направлениях, располагаются короткие сильно ветвящиеся отростки — дендриты, по которым в клетку поступают входные данные. (Иногда и на концах дендритов встречаются терминали, образующие так называемые дендро-дендритные синапсы между дендритами. В дальнейшем я не буду их учитывать, поскольку связанное с ними усложнение общей картины несущественно.)

Клетка как целое отделена от окружения клеточной мембраной, которая охватывает сому, аксон, нервные окончания, дендриты и все остальное. Для того, чтобы сигналы передавались от одного нейрона к другому, надо каким-то образом обеспечить им возможность «перехода через барьер» между нейронами. Это достигается с помощью межклеточного соединения, называемого синапсом, в котором терминаль одного нейрона соединена с какой-либо точкой на соме или на одном из дендритов другого нейрона (рис. 9.9).

Рис. 9.9. Синапсы обеспечивают контакт одного нейрона с другим

На самом деле, между терминалью одного нейрона и сомой или дендритом другого остается очень узкий зазор, который называется синаптической щелью(рис. 9.10).

Рис. 9.10. Схема строения химического синапса. Через синаптическую щель сигнал передается с помощью нейромедиатора

При передаче от одного нейрона к другому сигнал должен преодолеть этот зазор.

В какой форме сигналы передаются по нервным волокнам и через синаптические щели? Что заставляет следующий нейрон передавать сигнал дальше? Для непосвященного, вроде меня, механизмы, которые используются здесь природой, кажутся удивительными и совершенно зачаровывающими!

Можно было бы думать, что эти сигналы распространяются точно так же, как электрический ток по проводам, но в действительности все гораздо сложнее.

Нервное волокно представляет собой цилиндрическую трубку, заполненную раствором обычной соли (хлорида натрия), смешанной с хлоридом калия (с преобладанием последнего), так что внутри трубки находится смесь из ионов натрия, калия и хлора (рис. 9.11).

Рис. 9.11. Схематическое изображение нервного волокна. В состоянии покоя внутри волокна ионов хлора больше, чем ионов калия и натрия, что обеспечивает отрицательный суммарный заряд; снаружи ситуация противоположная, и, соответственно, имеется положительный заряд. Калиево-натриевый баланс внутри трубки отличается от баланса снаружи: внутри больше ионов калия, а снаружи — натрия

Снаружи волокна находятся те же ионы, но в других соотношениях: ионов натрия больше, чем ионов калия. В состоянии покоя содержимое трубки имеет суммарный отрицательный заряд (т. е. ионов хлора там больше, чем ионов калия и натрия вместе; напомним, что ионы калия и натрия заряжены положительно, тогда как ионы хлора — отрицательно). Клеточная мембрана, образующая поверхность цилиндра, имеет «утечки», поэтому ионы перемещаются через мембрану таким образом, чтобы нейтрализовать избыточный заряд. Компенсацию утечек и поддержание избыточного отрицательного заряда внутри трубки осуществляет «ионный насос», который очень медленно откачивает ионы натрия через мембрану наружу. Отчасти это же помогает поддерживать избыток ионов калия по сравнению с ионами натрия во внутреннем растворе. Существует также ионный насос, который (более медленно) переносит ионы калия из наружной среды внутрь трубки (что, правда, не способствует поддержанию разности зарядов).