Чтобы сделать это сравнение более наглядным, я должен объяснить, что такое логический элемент. В компьютере мы также сталкиваемся с ситуацией типа «все или ничего»: либо в проводнике есть импульс тока, либо его нет, причем когда импульс есть, его величина всегда одна и та же. Поскольку все в компьютере строго синхронизовано, то отсутствие импульса было бы определенным сигналом, который может быть «замечен» компьютером. Вообще говоря, когда мы пользуемся термином «логический элемент», мы неявно подразумеваем, что наличие или отсутствие импульса обозначает «истину» или «ложь», соответственно. Конечно же, к реальной истине или лжи это никакого отношения не имеет и используется только как общепринятая терминология. Мы будем также обозначать «истину» (наличие импульса) цифрой « 1 » и «ложь» (отсутствие импульса) цифрой « 0 ». Помимо этого, как и в главе 4, мы будем обозначать знаком « & » логическое « и» (которое является «утверждением» об «истинности» обоих аргументов, т. е. принимает значение 1 тогда и только тогда, когда оба они равны 1 ); « V » — логическое « или» (которое «означает», что либо один из аргументов, либо оба они «истинны», т. е. выражение становится равным 0 тогда и только тогда, когда оба аргумента имеют значение 0 ); знаком «=>» — «следует» (т. е. А => В означает утверждение «если истинно А , то истинно В », что эквивалентно утверждению «либо А ложно, либо В истинно»); «<=>» — «тогда и только тогда» (выражение истинно, если оба аргумента «истинны» или же оба «ложны» одновременно); и использовать знак «~» для логического « не» (выражение «истинно», если аргумент «ложен», и «ложно», если аргумент «истинен»). Результаты применения различных логических операций можно описать при помощи так называемых «таблиц истинности»:
в каждой из которых А обозначает строки (т. е. А = 0 дает первую строку, а А = 1 — вторую), а В — столбцы. Например, если А = 0 и В = 1 , что во всех таблицах отвечает правому верхнему углу, то выражение А => В согласно третьей таблице примет значение 1 . (Соответствующий словесный пример из области традиционной логики: утверждение «если я сплю, то я счастлив», очевидно, остается истинным в частном случае, когда я бодрствую и счастлив.) И, наконец, действие логического элемента «не» может быть записано просто как:
— 0 = 1 и ~ 1 = 0 .
Это — основные типы логических элементов. Есть еще ряд других, но все они могут быть построены из только что описанных [208].
Итак, можем ли мы, в принципе, построить компьютер, используя соединенные между собой нейроны? Я собираюсь показать, что это возможно даже при самых примитивных представлениях о функциях нейрона. Посмотрим, как можно было бы, в принципе, построить логические элементы на основе соединенных между собой нейронов. Нам потребуется новый способ записи цифр, поскольку в отсутствие сигнала ничего не происходит. Будем считать (совершенно произвольно), что двойной импульс обозначает 1 (или «истину»), а одиночный — 0 (или «ложь»). Примем также упрощенную схему, в которой нейрон возбуждается только при получении двух возбуждающих импульсов (т. е. двойного импульса) одновременно. Тогда нетрудно сконструировать элемент «и» (т. е. «&»). Как показано на рис. 9.13, для этого достаточно, чтобы с выходным нейроном образовывали входные синапсы два нервных окончания.
208
На самом деле,