Имеются, однако, и иные точки зрения в математике, такие как интуиционизм (и финитизм ), которые, впадая в противоположную крайность, отказываются признавать существование каких бы то ни было бесконечных множеств [79]. Интуиционизм был основан в 1924 году датским математиком Лейтзеном Э. Брауэром как альтернативный ответ — отличный от предлагаемого формализмом — на парадоксы (типа расселовского), которые могут возникать там, где бесконечные множества используются слишком вольно в математических рассуждениях. Зачатки этого подхода прослеживаются еще во времена Аристотеля, который, будучи учеником Платона, тем не менее отвергал его взгляды на абсолютное существование математических сущностей и возможность рассмотрения бесконечных множеств. Согласно интуиционизму, существование множества (бесконечного, равно как, впрочем, и конечного) не может признаваться как свойство, изначально ему присущее, а только лишь как функция правил, по которым оно организовано.
Характерная черта интуиционизма Брауэра состоит в отрицании закона «исключенного третьего». Этот закон говорит о том, что отрицание ложности некоторого выражения эквивалентно утверждению истинности этого выражения. (Или в принятой символике: ~ ( ~ P ) <=> P , отношение, которое нам уже встречалось ранее.) Наверное, Аристотель был бы очень недоволен, столкнувшись с отрицанием настолько логически «очевидного» факта! С общепринятых позиций здравого смысла закон «исключенного третьего» может рассматриваться как самоочевидная истина: если утверждение о том, что нечто ложно, само неверно, то это нечто должно быть непременно справедливым! (На этом законе основана математическая процедура «доказательства от противного», упомянутой в прим. 53 подглавы «Неразрешимость проблемы Гильберта») Но интуиционисты считают допустимым отвергать справедливость этого закона. Основная причина здесь в том, что они занимают иную позицию по отношению к понятию существования, требуя, чтобы перед признанием существования математического объекта предъявлялось его конкретное (мысленное) построение. То есть, для интуиционалиста «существование» означает «конструктивное существование». В математическом доказательстве, использующем принцип «доказательства от противного», сперва выдвигается некая гипотеза, ложность которой затем устанавливается путем обнаружения противоречий, к которым приводят следствия из этой гипотезы. Эта гипотеза может принимать форму утверждения о том, что математический объект с требуемыми свойствами не существует. Когда это приводит к противоречию, то в обычной математике делается вывод о том, что данный объект да, существует. Но подобное доказательство, само по себе, не содержит руководства для построения такого объекта. Такое существование для интуициониста существованием отнюдь не является; и именно на этом основании они отказываются признавать закон «исключенного третьего» и процедуру «доказательства от противного». Сам Брауэр был совершенно неудовлетворен таким неконструктивным подходом к понятию существования [80]. Без указания реально осуществимого метода построения, говорил он, такая теория существования будет бессмысленной. В логике Брауэра нельзя сделать заключение о существовании объекта, исходя из ложности утверждения о его несуществовании!
По моему мнению, несмотря на похвальное стремление искать «конструктивное» решение вопроса о математическом существовании, интуиционизм, исповедуемый Брауэром, все же является слишком радикальным. Брауэр впервые опубликовал свои идеи в 1924 году, более чем за десять лет до работ Тьюринга и Черча. Теперь, когда понятие конструктивности — в терминах теории Тьюринга о вычислимости — может изучаться в общепринятых рамках математической философии, уже нет необходимости впадать в крайности, как к тому нас призывает Брауэр. Мы можем исследовать конструктивность как самостоятельный предмет, отдельный от вопроса математического существования. Если мы последуем путем интуиционизма, то будем вынуждены отказаться от использования очень мощных приемов доказательства в математике, заметно ограничивая и лишая силы сам предмет.
79
Интуиционизм был назван так потому, что ему предназначалось служить отражением человеческой мысли.
80
Сам Брауэр начал размышлять в этом направлении, в частности, потому, что очень придирчиво и болезненно относился к «неконструктивности» доказательства своей теоремы из области топологии, «теоремы Брауэра о неподвижной точке». Эта теорема утверждает, что, если вы возьмете круг — то есть окружность вместе со всеми точками внутри нее — и будете непрерывно двигать его внутри области, где он находился изначально, то найдется по крайней мере одна точка круга, — называемая неподвижной точкой, — которая окажется точно там же, откуда она начала движение. Не ясно, где именно располагается эта точка, и может ли их быть несколько — теорема говорит только о