Выбрать главу

Поскольку, тем самым, истинные утверждения не являются (равно как и ложные) рекурсивно нумеруемыми, то они образуют гораздо более глубокий и сложноорганизованный массив, чем утверждения, имеющие доказательство внутри системы. И это иллюстрирует еще один аспект теоремы Геделя: что понятие математической истины только частично досягаемо в рамках любой формальной системы.

Существуют некоторые простые классы истинных арифметических утверждений, которые все же образуют рекурсивно нумеруемые множества. Например, как это нетрудно видеть, истинные утверждения вида

E к.с. ω , x …, z [ f ( ω , x ,…, z ) = 0 ],

где f () — некоторая функция, построенная из обычных арифметических операций сложения, вычитания, умножения и возведения в степень, составляют рекурсивно нумеруемые множества [83](которые я обозначу через А ). Пример утверждения такого рода — хотя мы не знаем, верно ли оно — это отрицание последней теоремы Ферма [84]., для которой мы можем взять за f () функцию

f ( ω , х , у , z ) = ( х + 1 ) ω + 3 + ( у + 1 ) ω + 3 - ( z + 1 ) ω + 3 .

Однако, множество А не является рекурсивным (факт, который не так легко установить, хотя он и вытекает из оригинального доказательства Геделя). Значит, мы не имеем никаких алгоритмических средств для выяснения — хотя бы в принципе — истинности или ложности последней теоремы Ферма.

Рис. 4.1. Очень схематичное представление рекурсивного множества

На рис. 4.1 я попытался схематически представить рекурсивное множество как фигуру с простой и изящной границей, так что кажется, что определить непосредственно принадлежность произвольной точки этому множеству — дело несложное. Каждая точка на рисунке соответствует некоторому натуральному числу. При этом дополнительное множество также представлено в виде просто выглядящей области на плоскости. На рис. 4.2 я постарался изобразить рекурсивно нумеруемое, но не рекурсивное множество в виде области со сложной границей, где подразумевается, что множество с одной стороны границы, — той, что рекурсивно нумеруема — должно выглядеть проще, чем с другой.

Рис. 4.2. Очень схематичное представление рекурсивно нумеруемого множества (темная область), которое не является рекурсивным. Здесь светлая область определяется только по «остаточному принципу», когда удаляется темная часть, построенная при помощи вычислений; а установить путем прямых вычислений, принадлежит ли заданная точка белой области, нельзя

Фигуры очень схематичны и не претендуют на какую бы то ни было «геометрическую аккуратность». И конечно же, не стоит придавать большого значения тому, что эти рисунки изображены так, как если бы они были расположены на двумерной плоскости!

На рис. 4.3 я схематично обозначил, как расположены области Р , Т и А внутри множества N .

Рис. 4.3. Очень схематичное представление различных множеств утверждений. Множество Р утверждений, доказуемых в рамках системы, является, как и А , рекурсивно нумеруемым, но не рекурсивным. Множество Т истинных утверждений даже не рекурсивно нумеруемо

вернуться

83

Мы нумеруем множества { v , ω , x …., z ], где v представляет функцию f в согласии с некоторой лексикографической схемой. Мы (рекурсивно) проверяем на каждом этапе справедливость равенства f ( ω , x …, z ) = 0 и оставляем утверждение E к.с. ω , х …., z [( ω , х …., z ) = 0 ] только в том случае, если это равенство выполняется.

вернуться

84

Последняя теорема Ферма доказана английским математиком Эндрю Уайлсом (Andrew J. Wiles). Доказательство опубликовано в 1995 году. — Прим. ред.