Существует другой метод, имеющий непосредственное отношение к данному вопросу, который не предполагает вообще обращения к вычислимым комплексным числам. Вместо того, чтобы пытаться пронумеровать комплексные числа внутри или снаружи рассматриваемого множества, мы просто будем вызывать алгоритм, который для любого наперед заданного комплексного числа будет определять, принадлежит оно нашему множеству или же его дополнению. Говоря «наперед заданный», я подразумеваю, что для каждого числа, которое мы рассматриваем, нам некоторым — быть может, «волшебным» — образом известны цифры мнимой и вещественной части, одна за другой, и в таком количестве, сколько нам нужно. Я не требую, чтобы существовал алгоритм, известный или неизвестный, для нахождения этих цифр. Множество комплексных чисел считалось бы «рекурсивно нумеруемым», если бы существовал хотя бы единственный алгоритм такой, что для любой заданной ему вышеуказанным образом последовательности цифр он бы говорил «да» после конечного числа шагов тогда и только тогда, когда комплексное число действительно принадлежит этому множеству. Оказывается, что как и в случае подхода, предложенного выше, эта точка зрение также «игнорирует» границы. Следовательно, внутренняя и внешняя области единичного диска будут каждая по отдельности считаться рекурсивно нумеруемыми в указанном смысле, тогда как сама граница — нет.
Для меня совершенно не очевидно, что какой-либо из этих методов дает то, что нам нужно [86]. Философия «игнорирования границ», будучи приложенной к множеству Мандельброта, может привести к потере большого числа тонких моментов. Одна часть этого множества состоит из «клякс» — внутренних областей, а другая — из «усиков». Наибольшие сложности при этом связаны, видимо, с «усиками», которые могут «извиваться» самым причудливым образом. Однако, «усики» не принадлежат внутренней части множества, и, тем самым, они были бы проигнорированы, используй мы любой из двух вышеприведенных подходов. Но даже при таком допущении остается неясность, можно ли считать множество Мандельброта рекурсивным в том случае, когда рассматриваются только «кляксы». Похоже, что вопрос этот связан с некоторым недоказанным предположением, касающимся самого множества, а именно: является ли оно, что называется, «локально связным»? Я не собираюсь здесь разбирать значение этого понятия или его важность для данного вопроса. Я хочу просто показать, что существует ряд трудностей, которые вызывают неразрешенные на сегодняшний день вопросы, касающиеся множества Мандельброта, чье решение — первоочередная задача для некоторых современных математических исследований.
Существуют также и другие подходы, которые могут использоваться с тем, чтобы обойти проблему несчетности комплексных чисел. Вместо того, чтобы рассматривать все вычислимые комплексные числа, можно ограничиться только подмножеством таких чисел, для любой пары которых можно вычислительным путем установить их равенство. Простым примером такого подмножества могут служить «рациональные» комплексные числа, у которых как мнимая, так и вещественная части могут быть представлены рациональными числами. Я не думаю, однако, что это дало бы многое в случае «усиков» множества Мандельброта, поскольку такая точка зрения накладывает очень значительные ограничения. Более удовлетворительным могло бы оказаться рассмотрение алгебраических чисел — тех комплексных чисел, которые являются алгебраическими решениями уравнений с целыми коэффициентами. Например, все решения z уравнения
129z 7 — ЗЗz 5 + 725z 4 + 16z 3 — 2z — 3 = 0
86
Блюмом, Шубом и Смэйлом [1989] была разработана новая теория вычислимости для действительных функций от действительных переменных (в отличие от общепринятых функций натуральных чисел, принимающих натуральные значения), подробности которой я узнал лишь совсем недавно. Эта теория применима и к комплексным функциям, а кроме того, может сыграть заметную роль в упомянутых мной вопросах.