- Циркуль отставить! Линейку на абордаж! - скомандовал Игрек и соединил отрезком прямой точки С и F. Потом он отшвырнул линейку и заорал: - Отбой! Отрезок CF параллелен АВ!
Теперь можно было приступать к нашему чертежу, но штурман спохватился, что не познакомил нас с ещё одной, совсем крохотной, но необходимой задачкой на построение.
- Так как эта третья задачка сводится к двум первым, будете решать сами,-сказал он и снова начертил отрезок АВ.- Требуется разделить данный отрезок на несколько одинаковых частей. Хоть на три.
Что и говорить, не сразу нам это далось, зато теперь-то уж мы знаем, как это делается.
Берётся линейка, и к отрезку АВ из точки А проводится другой отрезок, любой длины и под любым острым углом. На нём, опять-таки от точки А, но уже с помощью циркуля откладываются ещё три совершенно одинаковых отрезка: АС, СД и ДЕ. Потом точки Е и В соединяются линейкой, а через точки Д и С проводятся отрезки, параллельные ЕВ (точки пересечения этих отрезков с АВ мы обозначили буквами К и F).
Так мы научились делить отрезок на равные части.
- Да, но почему эти отрезки равны между собой? Из чего это следует? Да из того, бом-брам-фок, что полученные нами треугольники AFC, АКД и ABE подобны! Ведь углы у них конгруэнтны! -загремел штурман.- А раз так - значит, стороны этих треугольников соответственно пропорциональны.
- Действительно,- согласился Пи.- Сторона АС относится к стороне АД как 1:2. Значит, как 1:2 относится также сторона AF к стороне АК. Отсюда AF = FK. По тем же причинам равны и отрезки FK и КВ.
Вот теперь можно было приступить к нашему чертежу.
Штурман начал с того, что вычертил окружность и предложил нам найти её центр.
- Что тут искать! - засмеялся я.- Центр там, где дырочка от циркуля.
- Э, нет, так дело не пойдёт! - сказал Игрек. Он достал блюдце, положил на палубу и обвёл угольком.
- Вот вам окружность без дырочки. Где у неё центр? Не знаете? А если я скажу, что диаметр, перпендикулярный к любой хорде, делит эту хорду пополам?
- Тогда другое дело! - обрадовался Пи.- Значит, надо провести какую-нибудь хорду, найти её середину, а затем провести через эту середину перпендикуляр. Так мы найдём диаметр круга. Теперь то же самое проделаем с диаметром, проведём через его середину перпендикуляр и получим, таким образом, ещё один диаметр. Ну, а точка пересечения двух диаметров и есть центр круга.
Тут мы принялись за дело, и через некоторое время на палубе появился чертёж капитана. Мы построили его сами, с помощью тех задач, с которыми нас познакомил штурман. При этом главную роль сыграли циркуль и линейка. Ну и, конечно же, голова! Без головы, как известно, ничего не делается. Даже глупости.
Порт Ариф
В пять утра меня разбудил Пи. Он сказал, что к нашему Фрегату пришвартовалась быстроходная бригантина, идущая в Карликанию, и хорошо бы отправить на ней Стакса и Топса. А то с ними на судне хлопот не оберёшься: того и гляди, свалятся в воду!
Как ни жаль было расставаться с обезьянками, я всё же согласился и быстро снарядил их в дорогу. Воротясь в каюту один, я ещё поспал немножко и проснулся в прескверном настроении. Очень уж мне не хватало моих мартышек!
Но на нашем Фрегате не соскучишься. Иной раз обыкновенные, казалось бы, вещи оборачиваются здесь самым неожиданным образом.
Знаете ли вы, например, что такое насморк? Думаете, насморк - это когда чихаешь и всё время лезешь в карман за носовым платком? Ничего подобного! Насморк - функция сквозняка. Двойка в дневнике - функция невыученного урока. А хороший нагоняй - функция этой самой двойки в дневнике. По-вашему, я выдумываю? Честное слово, нет!
Дело было так. Наш Фрегат вошёл в порт Ариф.
"Красивое название! Наверное, от слова арифметика",- подумал я и ошибся.
Ариф - название сокращённое, и в нём объединились два слова: аргумент и функция. Впрочем, аргумент и функция - тоже понятия математические. И то и другое - величины переменные. Только вот аргументы - народ независимый. Они изменяются по собственной воле. А функции целиком зависят от аргументов. Иногда от одного, иногда - от многих.
Вот, например, скорость нашего Фрегата - функция, которая зависит от многих аргументов. От силы ветра. От его направления. От умения команды ставить паруса. От искусства штурмана держать правильный курс. Влияет на скорость также и вес судна, и даже форма его. Словом, скорость Фрегата зависит кит знает от скольких причин... то бишь аргументов. И потому эта функция не простая, а сложная.