Выбрать главу

- Вы забыли о кулинарии, - сказал Пи. - Хорошему кулинару тоже без математики не обойтись. Он должен точно рассчитать, сколько ему потребуется продуктов, чтобы вкусно и сытно накормить едоков.

- Да,- согласился капитан, - умение считать - великое дело. Но ещё важнее умение мыслить. Тем более, мыслить математически. Для примера предложу вам одну задачку. Что-то вроде небольшого домашнего задания. Не возражаете? Ну, мы, конечно, не возражали, и капитан тотчас приступил к делу.

- Представьте себе маленький шарик - ну, хотя бы горошину, которая опоясана ниточкой по экватору. Снимем эту ниточку (разумеется, мысленно) с горошины, выпрямим её и удлиним другой ниткой ровно на один метр. Далее уложим эту удлинённую нитку на столе так, чтобы она образовала окружность, а горошину поместим в центре окружности. А потом измерим зазор между ниткой и поверхностью горошины, и окажется, что он равен примерно 16 сантиметрам - уж поверьте мне на слово!

- Ну и что? - спросил я разочарованно.

- Сейчас увидишь, - сказал Единица. - Проделаем тот же опыт, но уже не с горошиной, а с земным шаром.

- Ого-го-го! - воскликнул Пи. - Земля - не горошина!

- А воображение на что? - спросил капитан. - Итак, мысленно снимем с Земли экватор, распрямим его. Получится приличная ниточка длиной этак в 40 миллионов метров. И удлиним её тоже ровно на один метр.

- Всего-навсего на один? - переспросил Пи.

- Всего-навсего. А дальше всё, как с горошиной: соединим концы удлинённого экватора, снова придадим ему форму окружности и наденем эту окружность на земной шар. Нам придётся её придерживать, чтобы она не свалилась, потому что между экватором и поверхностью земного шара появится зазор. И как вы думаете, какой?

- Наверное, его и в микроскоп не разглядишь, - предположил я. - Что такое один метр по сравнению с сорока миллионами!

- Вот и видно, что математически ты мыслить не умеешь! - сказал капитан. - Расстояние между новым, удлинённым, и прежним экватором Земли будет то же, что и у горошины: около 16 сантиметров!

У нас от изумления глаза на лоб полезли.

- Чем зря таращиться, вспомнили бы лучше, каково отношение длины любой окружности к её диаметру, и подсчитали бы величину обоих зазоров,- посоветовал Единица.

Мы попросили его высказаться подробнее, но он стоял на том, чтобы мы решили задачу дома, по возвращении из плавания, для удобства проверив её на шаре диаметром в 100 сантиметров.

Но тут ему показалось, что одной задачи для домашнего задания мало, и он предложил нам вторую, о которой вспомнил, как видно, тут же, на месте.

Как раз в это время Фрегат наш вошёл в шлюз канала, и все мы стояли на корме, глядя, как медленно закрываются шлюзовые ворота. Сперва расстояние между створками было не менее 30 метров, потом оно стало постепенно уменьшаться. Вот уже просвет превратился в узкую длинную щёлку. Щёлка становилась всё меньше и меньше и наконец исчезла совсем. Да иначе и быть не могло! Так по крайней мере думал я.

Но капитан сказал, что веков двадцать пять назад в Древней Греции жил один мудрец по имени Зенон. Так вот, он утверждал, что можно сделать такую щель, которая не закроется, хотя и будет всё время уменьшаться. Эта-то задача и стала нашим вторым домашним заданием, которое мы с Пи записали от слова до слова:

"Однажды быстроногий Ахиллес решил состязаться в беге с черепахой. По условию он должен был бежать ровно в 10 раз быстрее её, но при этом дать ей 100 метров форы -то есть поставить её на 100 метров впереди себя. И вот состязание началось. Когда Ахиллес пробежал 100 метров, отделявших его от черепахи, её уже на этом месте не было: за это время она продвинулась вперёд на 10 метров. Ахиллес пробежал и эти 10 метров. Но за это время черепаха ушла вперёд ещё на 10 сантиметров. Так расстояние между ними всё время уменьшалось: то оно было равно одному сантиметру, потом одному миллиметру, одной десятой миллиметра, одной сотой, тысячной, миллионной, миллиардной... Черепаха всё время оказывалась впереди своего соперника. Хоть на самую малость, но впереди! Каким образом лучший бегун Греции не смог догнать самое медлительное существо на свете - черепаху?"