При сообщениях мы будем пользоваться в качестве числовых знаков также и буквами а, b, c. Согласно этому, b > а является сообщением того, что числовой знак b выступает за числовым знаком a. Точно так же, если исходить из этой точки зрения, a + b = b + a есть сообщение, что числовой знак a + b означает то же, что и числовой знак b + a. При этом содержательная правильность этого сообщения может быть доказана с помощью содержательного вывода, и мы можем с этим наглядным содержательным способом обсуждения пойти очень далеко вперёд.
Я хотел бы показать вам только один пример, в котором переходят за этот наглядный способ обсуждения. Самым большим (39 цифр) из известных до сих пор простых чисел является
р = 170 141 183 460 469 231 731 687 303 715 884 105 727.
С помощью известного евклидовского способа мы можем доказать, рассуждая полностью в рамках нашей установки, что между p + 1 и p! + 1 безусловно существует новое простое число. Это высказывание само по себе также соответствует нашей конечной установке, так как слово «существует» служит в данном случае только для того, чтобы короче сформулировать следующее высказывание:
Безусловно: p + 1 или p + 2 или p + 3 ... или p! + 1 есть простое число. Но, далее, очевидно, то же я могу выразить словами: существует простое число
1. > p и в то же время
2. <= p! + 1
Отсюда мы приходим к формулировке теоремы, которая выражает только часть евклидовского утверждения; существует простое число >p. Хотя по своему содержанию это последнее утверждение гораздо уже евклидовского и хотя переход кажется совершенно безобидным, всё же это есть прыжок в трансфинитное [в смысле «законечное» — прим. ред.], если только это частичное высказывание рассматривать, как самостоятельное утверждение, вне вышеприведённой связи.
Как это может быть? Мы имеем здесь высказывание о существовании: «существует»! Правда, мы встречаем уже это слово в теореме Евклида. Однако там, как я уже говорил, слово «существует» представляло собою другой сокращённый способ выражения того, что либо p + 1, либо p + 2, либо p + 3 ..., либо p! + 1 есть простое число, подобно тому, как длинную фразу: «либо этот кусок мела красен, либо тот кусок мела красен, либо ..., либо кусок мела, лежащий вон там, красен» заменяют короткой: «среди этих кусков мела имеется красный кусок». Такого рода утверждение, говорящее о том, что среди некоторой конечной совокупности предмет, обладающий определённым свойством, «существует», полностью соответствует нашей конечной установке. Напротив того, альтернатива «либо: р + 1, либо p + 2, либо р + 3, ... и так до бесконечности — есть простое число» является, так сказать, бесконечной «или-связью», и подобный переход к бесконечному без особого объяснения и без необходимых при случае правил предосторожности так же мало дозволен, как мало дозволен в анализе переход от конечных произведений к бесконечным; и, прежде всего, он, вообще говоря, не имеет смысла.
Вообще, если исходить из конечной точки зрения, то высказывание вида «существует число, имеющее такое-то и такое-то свойство» имеет смысл только как частичное высказывание, т. е. как часть более определённого высказывания, более точное содержание которого, однако, для многих приложений несущественно.
Таким образом, мы натолкнулись здесь на трансфинитное при разложении высказывания о существовании на части, ни одна из которых не может быть истолкована как «или-связь». Равным образом, мы приходим к трансфинитному, когда мы отрицаем общее, т. е. распространяющееся на любые числовые знаки, утверждение. Так, например, для высказывания: если а — числовой знак, то всегда должно быть
a + 1 = 1 + a,
— с конечной точки зрения не может быть составлено его отрицание. Мы можем себе это уяснить, если вспомним, что если исходить из этой точки зрения, то это высказывание означает не соединение бесконечного множества числовых равенств союзом «и», а суждение гипотетического характера, которое нечто утверждает только для того случая, когда перед нами имеется некоторый числовой знак.