Проект «Сумасшедший ученый». Мы знаем, как широко распространены научные эксперименты в высокотехнологичных отраслях, например фармацевтической. Производящие лекарства компании тестируют продукты на целевых и контрольных группах, давая членам последних плацебо (лекарства-«пустышки», вещества без лечебных свойств). Они уделяют огромное внимание соблюдению случайного метода распределения участников между целевой и контрольной группами, чтобы их состав был однородным и не влиял на оценку эффективности лекарства. Этот действенный аналитический прием делает возможным причинно-следственный анализ и распространение выводов, сделанных на основе данных, полученных в целевой группе, на генеральную совокупность.
Строгий эксперимент больше не является прерогативой одних только ученых; сейчас он стал аналитическим приемом, необходимым каждой крупной компании. Сейчас широко распространено программное обеспечение, помогающее менеджерам и аналитикам проводить анализ. Компании получили возможность принимать решения на основе строго научных экспериментов. В прошлом любое вторжение в область рандомизированного тестирования (случайного распределения участников целевой и контрольной групп, о котором мы только что говорили) требовало приглашения дипломированного специалиста по статистике или по разработке научных экспериментов. Теперь магистр делового администрирования, прошедший курс статистического анализа, вполне может организовать процесс с помощью нужного программного обеспечения, помогающего определить численность целевой и контрольной групп, сайты для тестирования и контроля, а также сделать оценку статистической значимости любых отклонений, выявленных в ходе эксперимента.
«Проекты сумасшедших ученых» особенно удачно подходят для розничных сетей с многочисленными супермаркетами, банков с множеством отделений и других подобных компаний. Это упрощает использование части торговых точек или отделений в качестве целевых, а остальных – в качестве контрольных. Стало легко проводить эксперименты на сайтах, где часть посетителей можно направить на одну версию интернет-страницы, а вторую часть – на другую ее версию, а потом проверить, окажутся ли результаты существенно отличными (это называется А/В тестированием в сфере исследования сайтов).
Некоторые примеры «проектов сумасшедших ученых» приведены ниже[17].
• Способствует ли установка аквариумов с живыми омарами их продажам в супермаркетах Food Lion? Видимо, ответ будет утвердительным, если покупатели этого супермаркета уже привыкли покупать здесь омаров (то есть принадлежат к группе лиц со сравнительно высокими доходами), и отрицательным, если обеспеченные покупатели не заходят сюда.
• Увеличится ли общая выручка супермаркета Kmart, если часть его торговых площадей отвести под магазины супермаркета Sears? Председатель совета директоров компании Sears Holdings Эдди Ламперт является большим поклонником рандомизированного тестирования. Он протестировал различные комбинации использования торговых площадей. На этот конкретный вопрос у нас ответа нет, но можно предположить, что если бы он был положительным, то таких комбинированных супермаркетов было бы гораздо больше.
• Какие из сети ресторанов морепродуктов Red Lobster (с высоким, средним или низким уровнем цен) обеспечивают максимальный объем продаж и что важнее для привлечения клиентов: внешний вид ресторана или его внутренняя отделка? Топ-менеджеры Red Lobster утверждают, что наибольшие продажи обеспечивают рестораны средней ценовой категории. Внешний вид ресторана играет очень большую роль в привлечении новых клиентов, но если они увидят, что его внутренняя отделка не соответствует внешнему виду, то второй раз в этот ресторан не придут.
Проект «Опрос». Опросы – это классический метод количественного анализа. Аналитики, проводящие их, имеют дело с уже произошедшими или происходящими в данный момент событиями. Аналитик не пытается повлиять на результаты, он только наблюдает, классифицирует и анализирует их. В типичном случае интервьюер стремится выявить статистически значимую зависимость между рядом исходных и рядом изучаемых факторов или переменных. Самый простой пример – опрос в выборке покупателей конкретного продукта об их личных характеристик, в том числе демографических (возраст и пол). Задавая вопросы о том, какие продукты они предпочитают, можно выяснить, пользуется ли конкретный продукт спросом в большей степени у мужчин, чем у женщин, будут ли определенные продукты пользоваться спросом преимущественно у молодых покупателей.
17
Все эти примеры взяты из практики деятельности клиентов компании по разработке прикладного программного обеспечения Applied Predictive Technologies, хотя мы получили их самостоятельно. Более подробно методы анализа описаны в книге: Davenport Т. How to Design Smart Business Experiments. Harvard Business Review, November 2009.