Выбрать главу

Пуская шарик по наклонной плоскости, можно было измерить время, необходимое шарику, чтобы скатиться до ее основания. Длина наклонной плоскости известна. Значит, можно было вычислить, каково ускорение скатывания по наклонной плоскости.

Для опытов Галилей взял доску длиной двенадцать локтей, конец которой был приподнят только на один-два локтя. Посередине доски был простроган узкий желоб, выстланный очень гладким пергаментом для уменьшения трения. По желобу скатывались бронзовые шарики, пускавшиеся Галилеем. Время измерялось водяными часами, то-есть по количеству воды, успевавшей вытечь из верхнего сосуда в нижний.

Сперва шарик был пущен с верхнего конца желоба. Когда он докатился вниз, Галилей заметил по водяным часам, сколько понадобилось ему на это времени.

По закону, выведенному теоретически Галилеем, расстояние, пройденное свободно падающим телом, увеличивается пропорционально квадрату времени. Следовательно, в четыре раза более короткий путь шарик должен пройти во вдвое более короткий промежуток времени. Пустив шарик с верхнего конца четвертой части длины желоба, Галилей убедился, что для этого расстояния шарику действительно понадобилось только вдвое меньше времени.

Опыт Галилея со скатыванием шариков по наклонной плоскости.

Так было доказано, что скатывание по наклонной плоскости подчиняется закону, выведенному для свободного падения. Значит, предположение Галилея, что ускорение свободного падения постоянно, справедливо.

Пользуясь наклонной плоскостью, можно было определить ускорение скатывания по ней. Для этого достаточно только заметить время, в течение которого шарик проходит всю ее длину.

Галилей хотел из этого опыта определить ускорение свободного падения. Он не знал, что вращение шарика очень усложняет эту задачу, которая могла быть решена таким путем только после открытия законов вращения тел.

Вот если бы можно было осуществить опыт скольжения тела без трения по наклонной плоскости, то такая задача не представила бы затруднений.

Допустим, что тело, скользящее по наклонной плоскости, прошло длину ее l за t секунд. Тогда l = at2/2, где a — ускорение скольжения.

Из закона наклонной плоскости следует, что сила, действующая вдоль нее, во столько раз меньше силы тяжести, во сколько высота ее меньше длины. Поэтому ускорение свободного падения легко было бы определить, зная ускорение скользящего тела.

Галилей изучал движение падающего тела кинематически, то-есть только с геометрической стороны. Он не принимал во внимание силы тяжести, сообщающей телам движение. Самое понятие о силе еще было неясным. Галилей часто называл причину, вызывающую движение, «импульсом» — слово, обозначающее в современной механике произведение силы на время (равное количеству движения). Но открытие кинематических законов движения падающих тел все-таки позволило Галилею решать практические задачи техники, например баллистики — науки о движении пушечных ядер.

Проблема траектории брошенного тела

Открытие законов свободного падения было началом динамики. Оно позволило немедленно же разрешить давнишнюю проблему о траектории пушечного ядра, которая имела важный практический характер.

Ядро вылетает из пушки под огромным давлением расширяющихся горячих газов. По выходе из ствола оно двигалось бы по инерции равномерно и прямолинейно, если бы его не притягивала Земля. Но как только оно покинет ствол пушки, притяжение Земли заставляет его падать.

Траектория брошенного тела определяется сложением поступательного движения и свободного падения.

Понятие о независимости движений было известно еще Аристотелю, указавшему правило их сложения: совершая движение в двух различных направлениях, тело движется по диагонали параллелограмма, построенного на скоростях этих движений.

Но почему ни Аристотель, ни его последователи не решили проблему траектории брошенного тела? Этому помешало их пренебрежение опытом: сложение движений они рассматривали только как геометрическую теорему. Но они не наблюдали движений физических тел и не знали, что реальные движения в действительности именно так и слагаются. Только поэтому аристотелианцы и могли утверждать, будто бы ядро сперва летит прямолинейно в направлении выстрела, а затем падает вертикально. Ошибочность этого мнения легко было доказать, бросив камень и наблюдая его движение.