Сделанный Гюйгенсом вывод, кажущийся парадоксальным, полностью оправдывается на опыте. Его справедливость подтверждается, например, при игре в бильярд упругими шарами из слоновой кости.
Когда катящийся шар ударяется о такой же покоящийся, то центры их сперва сблизятся. В этот момент, как и при ударе неупругих тел, оба шара должны бы получить половинную скорость первого из них в прежнем направлении.
Но упругость шаров сообщает каждому из них такую же скорость во взаимно противоположных направлениях. Поэтому ударивший шар остается на месте, так как его движение вперед парализуется толчком назад. А к половинной скорости шара, испытавшего удар, прибавляется еще такая же скорость от упругого толчка.
В результате ударивший шар останавливается, передав все количество своего движения другому шару, который приходит в движение со скоростью шара, нанесшего ему удар.
В рассмотренном случае оба шара имели одинаковую массу. Если их массы разной величины, то скорость ударяющего тела будет зависеть от соотношения масс.
Если масса ударяющего шара больше, чем покоящегося, то он не остановится, а будет двигаться в прежнем направлении, но с уменьшенной скоростью. Если же его масса меньше, чем покоящегося, то после удара он начнет двигаться в обратном направлении.
Тело, испытавшее удар, в обоих случаях движется в направлении ударяющего тела.
Гюйгенсу принадлежит и другая заслуга в теории удара. Он доказал, что при соударении абсолютно упругих тел сохраняется и сумма «живых сил», чего нет при ударе неупругих тел.
Выводы Гюйгенса подтвердились опытами Мариотта, устроившего для производства этих опытов специальный прибор. Ряд шаров из слоновой кости равных размеров был подвешен на нитях равной длины так, что шары соприкасались.
Отклонив крайний из них, отпускали его, чтобы он нанес прямой центральный удар в плоскости нитей. Тогда на другом конце ряда отскакивал один шар, поднимаясь на ту же высоту.
Это явление объясняется так: ударивший шар передает свое количество движения, или импульс[12], крайнему шару, а сам останавливается; крайний шар передает этот импульс следующему, и так далее; наконец последний шар отскакивает.
Гюйгенс доказал, что при соударении упругих тел передается как импульс, так и «живая сила». Отскочивший шар обладает тем же импульсом и той же «живой силой», как и шар, нанесший удар.
Воображаемый опыт Гюйгенса (соударение тел).
Но что произойдет, если удар нанесут два шара? Опыт показывает, что в этом случае отскакивают два шара — иначе не могли бы сохраниться одновременно и количество движения и кинетическая энергия.
Например, если бы мог отскочить один шар с вдвое большей скоростью, то количество движения осталось бы неизменным. Зато «живая сила» отскочившего шара была бы вдвое больше, чем у двух шаров, нанесших удар, что невозможно.
Удар действует в течение чрезвычайно короткого времени, сообщая, однако, заметное, а иногда и значительное ускорение. Если бы его действие продолжалось секунду, то ускорение было бы очень велико.
Но сила измеряется произведением массы на ускорение. Значит, сила удара огромна. Этим пользуются при забивании гвоздей и свай, при рубке топором и других работах.
Практически невозможно определить ускорение, сообщаемое ударом в течение чрезвычайно короткого времени. Поэтому нельзя определить и силу удара как произведение массы тела на ускорение.
Измерению доступна только скорость, сообщенная ударом телу. Поэтому о силе удара судят по количеству движения. В этом особенность так называемых мгновенных сил.
Изучение удара тел имело большое значение в технике. На законах соударения тел основан, например, баллистический маятник, долгое время применявшийся для измерения скорости движения ядер при вылете из орудия.
Баллистический маятник представлял собой подвешенный массивный ящик с большим котлом внутри, наполненным песком. Выброшенное из орудия в горизонтальном направлении ядро попадает в котел и останавливается в песке. Баллистический маятник приходит в движение и, откачнувшись, поднимается на некоторую высоту.
По высоте поднятия маятника над уровнем, когда он висел спокойно, можно вычислить скорость, сообщенную ему снарядом. Она равна v = √2gh, — гдеh высота, на которую поднялся маятник[13]. Зная высоту h, легко находим и v.
После соударения маятник и снаряд обладают количеством движения, равным (M + m), где М — масса маятника, m — масса снаряда, v — скорость движения маятника. Все эти величины известны.
12
Импульс характеризует действие силы в течение некоторого промежутка времени. Пусть сила
13