Выбрать главу

Все это к тому, что и наши соображения о будущем космонавтики, быть может, через несколько лет кому-то покажутся неубедительными или даже забавными. И тем не менее мы решились на этот маленький риск. И в оценке будущего освоения Луны, и в рассмотрении возможности полета на Марс, и в своих точках зрения на орбитальные колонии. Правда, мы нигде не пытались называть более или менее точные сроки и этим надеемся уберечь себя от будущих сарказмов наших нынешних молодых читателей.

Сначала поговорим о некоторых из тех задач, которые видятся нам в освоении космоса человеком, хотя и не в близкой перспективе, но достаточно реально. И в решении которых к тому же истинно нуждается наша планета.

Мы полагаем, что после получения достаточного опыта долговременных полетов на орбитальных станциях предстоит создание на орбитах существенно более крупных объектов. Возможно, это будут гигантские солнечные электростанции для снабжения энергией наземных потребителей.

Как известно, солнечную энергию можно преобразовать в электрическую разными способами, в частности, используя тепловой поток. Но наиболее простым в нашем случае представляются полупроводниковые преобразователи светового солнечного излучения, то есть солнечные батареи типа тех, которые применяются на абсолютном большинстве современных космических аппаратов. Уже сейчас получен огромный опыт длительной эксплуатации их в условиях космоса.

Применяются обычно кремниевые элементы — тонкие, небольшого размера, площадью несколько квадратных сантиметров слоистые пластинки из кремния (по существу, стекло, только очень дорогое), при попадании на которые солнечного света возникает всем известный фотоэффект: образуется разность потенциалов. С одного элемента можно снять очень небольшую мощность, причем КПД преобразования энергии у такого элемента невелик — максимум 10–12 процентов (у экспериментальных — до 18). Чтобы получить практический источник питания, элементы в большом количестве соединяют последовательно и параллельно. В результате с одного квадратного метра солнечной батареи можно получить мощность максимум 140–170 ватт (мощность солнечного потока за пределами атмосферы около 1400 ватт на квадратный метр). На станции «Салют-6», например, смонтировано три панели площадью по 20 квадратных метров.

Понятно, что такие батареи дают ток только при наличии солнечного освещения и тем больший, чем отвеснее падают лучи на их поверхность. Поэтому для повышения токосъема на многих космических аппаратах устанавливают механизм ориентации батареи на Солнце, работающие независимо от ориентации аппарата. Такие механизмы имеются, в частности, на многих спутниках «Космос» и станциях «Салют». В период прохождения в тени применяют буферные химические аккумуляторы, которые в остальное время подзаряжаются от солнечных батарей, а также сглаживают возможные колебания напряжения при изменении нагрузки.

Не без оснований солнечные батареи считаются выгодными для снабжения энергией Земли. Отсутствие вращающихся частей делает их эксплуатацию предельно простой, а ресурс практически неограниченным. Хотя со временем КПД батареи постепенно падает под воздействием ультрафиолетовых излучений и метеорной эрозии.

Столь подробно мы рассказали о работе солнечных батарей, чтобы читатель сам оценил достоинства космической электростанции большой мощности. Важнейшие, кстати, из принципиальных ее отличий от обычных бортовых солнечных батарей — это отсутствие необходимости в буферных аккумуляторах и наличие системы передачи на Землю выработанной энергии. Для этой цели выгоднее всего оказалось применить микроволновое излучение. Станция должна иметь, таким образом, специальный преобразователь и передатчик энергии с остронаправленной антенной, а также, конечно, средства ориентации на Солнце и аппаратуру управления.

На Земле должны быть сооружены приемник волн и преобразователь их в промышленную энергию. Чтобы станции могли иметь непрерывную и кратчайшую связь с наземными приемниками, их следует создавать на стационарной орбите, то есть на высоте 36 тысяч километров в экваториальной плоскости.

Главное на пути создания орбитальных электростанций — научиться строить в космосе гигантские конструкции, которые должны быть легкими и легко трансформируемыми после выведения на орбиту. Начинать, по-видимому, придется со сборки ажурной панели-блока размером, скажем, 100 на 100 метров. А затем, постепенно соединяя между собой такие блоки, наращивать площадь панели до десятков квадратных километров. С панели площадью около 50 квадратных километров можно будет снимать мощность до 10 миллионов киловатт. Наземная приемная антенна будет иметь диаметр порядка нескольких километров.

Возможно, не только сборку, но и изготовление блоков окажется выгоднее осуществлять прямо на орбите. То есть доставлять туда рулоны металлической ленты и потом ее резать, паять из нее стержни и собирать в ферменные блоки. Существуют и другие варианты технологии их изготовления.

Разумеется, на эти гигантские конструкции невозможно будет наклеивать обычные солнечные элементы — пластинки. Но в последние годы широко и не без успеха ведутся работы по созданию тонкопленочных рулонных солнечных батарей. Такие пленки будут просто натягиваться на фермы. Если сейчас каждый квадратный метр солнечных панелей имеет массу 5—10 килограммов, то масса пленочных солнечных батарей в перспективе будет несколько сот граммов на квадратный метр. С учетом массы фермы общая масса составит примерно килограмм на квадратный метр.

Каждый киловатт мощности вновь построенных космических станций согласно предварительным прикидкам может стоить около двух-трех тысяч рублей, что, оказывается, в полтора-два раза дороже, чем у наземных атомных станций, в 2–2,5 раза, чем у ГЭС, и в че-тыре-шесть раз, чем у тепловых. Но это учитывая затраты на постройку. Однако солнечная электростанция совсем не расходует невозобновляемых природных ресурсов. И это ее достоинство оказывается очень существенным — через пять-семь лет эксплуатации орбитальные источники энергии окажутся уже рентабельнее и тепловых и атомных.

Расчеты показывают, что в будущем космические электростанции могут внести существенный вклад в энергоснабжение на нашей планете.

Важнейшей из проблем создания таких станций является экономичная доставка на орбиту материалов или элементов конструкции для их монтажа. Общая масса станции мощностью 10 миллионов киловатт составит примерно 50–80 тысяч тонн.

— Возникает, Константин Петрович, вопрос: а реально ли создание крупных космических электростанций с точки зрения длительности и стоимости процесса транспортировки на орбиту элементов конструкции и сборки их там? Ведь для станции мощностью 10 миллионов киловатт понадобится порядка двух тысяч рейсов транспортных кораблей грузоподъемностью около 30 тонн. Если запускать даже по 100 кораблей в год, получится, что только доставка материалов может занять около двадцати лет, не считая окончательной сборки и отладки. Нельзя же так долго строить столь важный объект!

— Вопрос транспортировки — ключевой вопрос этой проблемы. Простой расчет показывает, что носители должны быть гораздо более мощными, чем существующие, чтобы выводить за один раз до 500 тонн. Тогда их понадобится лишь 100–150, и все грузы можно будет запустить за три-пять лет.

— Значит, всего лишь полтораста носителей, которых и в природе-то еще нет… А легко ли будет огромные ферменные панели ориентировать на Солнце, и не будут ли они быстро тормозиться за счет трения в атмосфере?

— Круговая скорость на стационарной орбите мала, а разрежение чрезвычайно велико — проблем с поддержанием орбиты не возникнет. Хотя момент инерции конструкции будет очень большой, ориентация тоже может быть вполне обеспечена.