Это — просто потому, что и то и другое перемещение может быть компенсировано одним и тем же коррелятивным движением нашего тела.
Следовательно, не что иное, как «коррелятивное движение», составляет единственную связь между двумя явлениями, которые иначе мы никогда и не подумали бы сближать.
С другой стороны, наше тело, благодаря огромному числу его сочленений и мускулов, может предпринимать множество различных движений; но не все они способны «компенсировать» изменение внешних предметов; к этому способны только те, при которых или все наше тело, или по крайней мере те из органов наших чувств, которых касается дело, перемещаются как целое, т. е. не изменяя относительных положений, — подобно твердому телу.
Итак:
1. Мы должны прежде всего различать две категории явлений. Одни, непроизвольные, не сопровождаемые мускульными ощущениями, приписываются нами внешним предметам; это суть внешние изменения. Другие, противоположного характера, которые мы приписываем движениям нашего собственного тела, суть изменения внутренние.
2. Мы замечаем, что известные изменения каждой из этих категорий могут быть компенсированы коррелятивным изменением другой категории.
3. Среди внешних изменений мы отличаем те, которые имеют коррелятивное изменение в другой категории; мы называем их перемещениями; среди изменений внутренних мы также отличаем те, которые имеют коррелятивное изменение в первой категории. Таким образом, благодаря этой взаимности определяется особый класс явлений, которые мы называем перемещениями.
Законы этих явлений и составляют предмет геометрии.
Закон однородности. Первый из этих законов есть закон однородности.
Предположим, что благодаря внешнему изменению α мы пришли от системы впечатлений A к системе B; потом это изменение α компенсировано соответственным волевым движением β так, что мы пришли опять к системе A.
Предположим теперь, что другое внешнее изменение α' снова приводит нас от системы A к системе B.
Опыт учит нас тогда, что это изменение α', как и α, способно компенсироваться коррелятивным волевым движением β' и что это движение β' соответствует тем же мускульным ощущениям, что и движение β, которое компенсировало α.
Именно этот факт и выражается обыкновенно словами: пространство однородно и изотропно.
Можно сказать также, что движение, происшедшее один раз, может повториться второй раз, третий раз и т. д., не меняя своих свойств.
В первой главе, где мы изучали природу математического умозаключения, мы видели, какое важное значение следует приписать возможности повторять неопределенное число раз одну и ту же операцию.
Именно от этого повторения математическое умозаключение приобретает свою силу; и если эта сила распространяется также на геометрические факты, то это — благодаря закону однородности.
Для полноты изложения надо было бы присоединить к закону однородности множество других аналогичных законов; я не хочу входить по поводу их в подробности, но математики резюмируют их одним словом, говоря, что перемещения образуют «группу».
Неевклидов мир. Если бы геометрическое пространство выступало в качестве кадра для каждого нашего представления, взятого в отдельности, то было бы невозможно представить себе образ, отделенный от этого кадра, и мы не могли бы ничего изменить в нашей геометрии.
На деле это не так: геометрия есть только резюме законов, по которым эти образы следуют друг за другом. В таком случае ничто не мешает нам вообразить себе ряд представлений, во всем подобных нашим обычным представлениям, но следующих друг за другом по законам, отличным от тех, к которым мы привыкли.
Поэтому понятно, что существа, умственное воспитание которых проходило бы в такой среде, где эти законы не выполняются, могли бы иметь геометрию, в значительной степени отличную от нашей.
Вообразим, например, мир, заключенный внутри большой сферы и подчиненный следующим законам. Температура здесь не равномерна; она имеет наибольшее значение в центре и понижается по мере удаления от него, делаясь равной абсолютному нулю на шаровой поверхности, которая является границей этого мира.
Я определю в точности даже закон, по которому изменяется эта температура. Пусть R будет радиус граничной поверхности, r — расстояние рассматриваемой точки от центра сферы. Абсолютная температура пусть будет пропорциональна R2 — r2.