Я предположу далее, что в этом мире все тела имеют один и тот же коэффициент расширения, именно такой, что длина какой-нибудь линейки пропорциональна абсолютной температуре.
Наконец, я предположу, что предмет, перенесенный из одной точки в другую, где температура иная, тотчас же приходит в состояние теплового равновесия со своей новой средой. В этих допущениях нет ничего ни противоречивого, ни немыслимого.
В таком случае движущийся предмет будет все уменьшаться по мере приближения к граничной сфере. Теперь заметим, что хотя этот мир ограничен с точки зрения нашей обычной геометрии, тем не менее он будет казаться бесконечным для его обитателей.
В самом деле, когда они пожелали бы приблизиться к граничной сфере, они охлаждались бы и становились бы все меньше и меньше. Поэтому шаги их постоянно укорачивались бы, и они никогда не могли бы достигнуть граничной сферы.
Если для нас геометрия есть не что иное, как изучение законов, по которым движутся неизменные твердые тела, то для этих воображаемых существ она была бы изучением законов, по которым движутся твердые тела, изменяющиеся вследствие тех различий в температуре, о которых я только что говорил.
Без сомнения, и в нашем мире реальные твердые тела также испытывают изменения формы и объема вследствие нагревания и охлаждения. Но устанавливая основы геометрии, мы пренебрегаем этими изменениями, так как, помимо того, что они крайне незначительны, они еще беспорядочны и, следовательно, кажутся нам случайными.
В воображаемом нами мире это было бы уже не так; эти изменения следовали бы правильным и очень простым законам. С другой стороны, различные твердые составные части тела обитателей этого мира испытывали бы такие же изменения формы и объема.
Я сделаю еще другое допущение. Я предположу, что свет здесь проходит через среды различной преломляющей способности, именно такие, что показатель преломления обратно пропорционален R2 — r2. Легко видеть, что в этих условиях световые лучи были бы не прямолинейными, а круговыми.
Чтобы оправдать все предыдущее, мне остается показать, что известные изменения, происходящие в положении внешних предметов, могут быть компенсированы коррелятивными движениями чувствующих существ, которые заселяют этот воображаемый мир; таким образом, может быть восстановлен первоначальный комплекс впечатлений, испытываемых этими существами.
Предположим в самом деле, что предмет перемещается, деформируясь: не как неизменное твердое тело, но как твердое тело, испытывающее неравномерные расширения, в точности соответствующие допущенному выше закону изменения температур. Для краткости я позволю себе называть подобное движение неевклидовым перемещением.
Если по соседству находится чувствующее существо, его впечатления будут изменены благодаря перемещению предмета, но оно будет в состоянии восстановить их в прежнем виде, передвигаясь само надлежащим образом. Достаточно, чтобы в результате система, состоящая из предмета и чувствующего существа, рассматриваемая как одно тело, испытывала одно из тех особых перемещений, которые я назвал неевклидовыми. Это возможно, если допустить, что члены этих существ расширяются по тому же закону, что и другие тела заселяемого ими мира.
Хотя с точки зрения нашей обычной геометрии тела окажутся после такого перемещения деформированными и различные их части отнюдь не возвратятся в прежнее относительное расположение, но мы увидим, что впечатления чувствующего существа окажутся теми же.
В самом деле, если взаимные расстояния различных частей и могли измениться, тем не менее части, бывшие вначале в соприкосновении, опять будут в соприкосновении. Следовательно, осязательные впечатления не изменятся. С другой стороны, если учесть гипотезу о преломлении и кривизне световых лучей, мы убедимся, что и зрительные впечатления останутся прежними.
Итак, наши воображаемые существа должны будут, как и мы, классифицировать наблюдаемые ими явления и выделить из них «изменения положения», которые можно компенсировать соответственным волевым движением.
Если они создадут геометрию, то она не будет, подобно нашей, изучением движений наших неизменных твердых тел; это будет наука об изменениях положения, изменениях, которые они выделят в особую группу и которые будут представлять не что иное, как «неевклидовы перемещения». Это будет неевклидова геометрия.