Эхолот очень похож на гидролокатор.
Ультразвуковой магнитострикционный вибратор 4 (рис. 20), укрепленный в корпусе корабля, через определенные промежутки времени, обычно один раз в секунду, посылает короткий сигнал, который автоматически регистрируется на специальной ленте. В эхолоте все операции автоматизированы. Когда ультразвук, достигнув морского дна и отразившись, приходит обратно, эхо-сигнал принимается магнитострикционным приемником 3, проходит через усилитель 2 и регистрируется на ленте. Таким образом, на движущейся ленте возникают две линии: одна — О — соответствует излучениям сигналов, то есть дну корабля, вторая — Д — приходу эхо-сигнала, то есть дну моря. Чем больше расстояние между этими линиями, тем больше глубина моря в той точке, в которой производилось измерение. Нанеся на ленту специальный масштаб, можно отсчитывать глубину моря в метрах. Такая запись глубин называется батиграммой.
Современные эхолоты устроены так, что на специальной шкале в той ее точке, которая соответствует глубине моря под кораблем, зажигается неоновая лампочка. Взглянув на эту шкалу, штурман всегда может узнать, какова глубина моря в том месте, где находится корабль. Эхолот не только предупреждает о наличии скал и мелей, но и позволяет определить местонахождение корабля. В настоящее время составлены очень подробные карты морских глубин. Пользуясь подобной картой и батиграммой, можно определить положение корабля даже тогда, когда сделать это другим способом почему-либо невозможно.
С помощью эхолота было найдено одно из самых глубоких мест в море — морская пучина в Тихом океане глубиной 10 860 метров.
Преимуществом ультразвуковых эхолотов является то, что ими можно производить измерения почти при любой погоде, не уменьшая скорости корабля, и измерять как очень большие, так и совсем малые глубины.
Точность, с какою эхолот определяет рельеф морского дна, настолько велика, что с его помощью можно отыскивать затонувшие корабли. На рис. 21 изображен записанный с помощью эхолота контур затонувшего на глубине 100 метров корабля «Лузитания».
Большое хозяйственное значение имеет применение эхолотов в рыбном промысле.
Наполненные воздухом плавательные пузыри рыб хорошо отражают ультразвуковые сигналы, а это дает возможность, пользуясь эхолотом, обнаруживать косяки рыб. На рис. 22 изображена лента эхолота, на которой записан обнаруженный косяк сельди. Верхняя граница 1 соответствует поверхности моря. Нижняя зигзагообразная линия 2 соответствует морскому дну. Записанная эхолотом линия 3, расположенная между дном и поверхностью моря, возникла в результате отражения ультразвука от косяка сельди. Подобная запись позволяет сделать заключение не только о расположении косяка, но и о его размерах.
Используя ультразвук для отыскания рыбных косяков, удается значительно увеличить улов, одновременно сократив продолжительность рыболовной экспедиции.
Несомненно, что в ближайшем будущем эхолот будет еще шире применяться в рыбном промысле.
В гидролокаторах и эхолотах ультразвук обнаруживается по тому действию, которое он оказывает на специальный приемник.
В настоящее время разработано несколько способов, с помощью которых можно сделать ультразвуковые волны еще и видимыми, что дает возможность следить за ходом ультразвукового луча.
В жаркий летний день можно наблюдать поднимающиеся над шоссейной дорогой струйки воздуха, нагревшегося от поверхности земли. Струйки сделались видимыми благодаря расширению воздуха при нагревании, которое привело к уменьшению его плотности, а последнее — к изменению оптических свойств, к уменьшению коэффициента преломления. По той же причине были бы видимы струйки сжатого воздуха, плотность которого больше, чем плотность окружающего воздуха.
Такие же явления наблюдаются и в жидкостях. Налейте в стакан теплой воды и, расположив позади стакана книгу, добавьте осторожно холодной и, следовательно, более плотной воды. Сейчас же возникнут струйки с иными оптическими свойствами. Наличие этих струек приведет к тому, что буквы на странице, рассматриваемой через стакан с водой, покажутся нам колеблющимися, расплывающимися.