Тем не менее, это не истинный раствор, в котором растворенное вещество измельчено до молекул. Хотя ультразвук дробит ртуть на мелкие частицы, им все же очень далеко до молекул. С помощью хорошего микроскопа можно различить и измерить отдельные капельки ртути. Они имеют в поперечнике несколько стотысячных долей сантиметра. Подобные капельки содержат еще сотни тысяч молекул, но они уже настолько малы, что не падают мгновенно на дно пробирки, а лишь медленно-медленно оседают. Даже через сутки остается еще сравнительно много мелких неосевших частиц. Такое подобие раствора называют эмульсией, если раздробленное вещество — жидкость, а сам процесс измельчения — диспергированием. Различные эмульсии находят самое разнообразное применение в технике, медицине, в быту.
При постройке дорог широко используют так называемые битумные эмульсии. Чрезвычайно разнообразны эмульсии, встречающиеся в пищевой промышленности, — это различные соусы и кремы, начинки для конфет, а также маргарин, который представляет собою охлажденную эмульсию масла, жиров и кислого молока. Широко применяются эмульсии в фармацевтической, текстильной и кожевенной промышленности, в сельском хозяйстве и т. д.
Промышленность заинтересована в получении эмульсий в возможно более короткий срок.
Известным советским ученым Сергеем Николаевичем Ржевкиным приготовлено с помощью ультразвука большое количество разнообразных эмульсий. Легко диспергируются (измельчаются) в воде бензол, парафин, различные масла. Особенно легко и быстро образуются эмульсии масел. Они очень устойчивы и лишь незначительно изменяются со временем.
На рис. 33 приведены кадры киносъемки образования эмульсии масла в воде. Диспергируемое масло по трубке подается к ультразвуковому вибратору. Под действием ультразвука оно разбивается на мельчайшие капельки. Образующаяся эмульсия заметна в виде постепенно увеличивающегося облачка. По увеличению белого облачка на последующих фотографиях мы убеждаемся, как быстро происходит образование эмульсии под действием ультразвука (промежутки времени между отдельными фотографиями — доли секунды). Быстрота, с которой происходит ультразвуковое эмульгирование, может иметь большое практическое значение.
При ультразвуковом измельчении основную роль опять-таки играет кавитация. Кроме того, при распространении ультразвуковой волны возникают колебания стенок сосуда, содержащего измельчаемую жидкость. Эти колебания также способствуют образованию эмульсии.
С помощью ультразвука можно измельчать и твердые тела, получая таким образом суспензии — смеси мелко раздробленного твердого вещества с жидкостью. Различные краски, некоторые лекарственные препараты, смазки для трущихся частей машин и другие широко применяемые вещества представляют собою суспензии. Тела, силы сцепления в которых невелики, такие, как гипс, слюда, сера, а также различные твердые органические соединения, как например, нафталин или камфора, размельчаются ультразвуком легко.
Хотя металлы измельчаются труднее, но все же с помощью ультразвука удалось получить также суспензии многих металлов в воде и масле.
Причина измельчения и в этом случае коренится в кавитации. Огромные давления, возникающие при захлопывании кавитационных пузырьков, действуют как микроскопические удары, дробящие твердое тело.
Мы знаем, что кавитация возникает не только при распространении ультразвука. С нею мы сталкиваемся при движении корабельных винтов, лопаток гидротурбин. И здесь наблюдается возникновение быстро захлопывающихся кавитационных пузырьков, вызывающее разрушение поверхности винтов и лопаток. Это убеждает нас в том, что одну из причин дробящего действия ультразвука мы указали правильно.
Следует заметить, что с помощью ультразвука можно добиться очень тонкого измельчения твердого тела, но количество раздробленного вещества при этом бывает обычно ничтожно. В самом деле, для того чтобы измельчить всего 1 грамм никеля, пользуясь ультразвуковым генератором средней мощности, потребовалось бы непрерывно озвучивать пластинку размером 4 квадратных сантиметра в продолжение месяца.
Поэтому, когда хотят получить сравнительно большое количество измельченного вещества, прибегают к особым приемам.
Так, например, желая получить суспензию серебра, измельчаемый кусок металла помещают в ванну, наполненную раствором соответствующей соли этого металла, в нашем случае — азотнокислого серебра (рис. 34). В туже ванну опускают специальную металлическую пластинку. Серебро соединяют с положительным полюсом батареи, а пластинку с отрицательным. При протекании электрического тока кусок серебра растворяется, одновременно равное количество серебра из раствора выделяется в виде мельчайших кристалликов на металлическом электроде. Если расположить ванну над колеблющимися кварцевыми пластинками и пропустить через нее мощный ультразвуковой луч, то мельчайшие кристаллики серебра будут отрываться от электрода. Образуется чрезвычайно мелкозернистая суспензия. В этом приборе можно получать суспензии самых разнообразных металлов. Установка отличается простой конструкцией и большой производительностью.