Выбрать главу
Рис. 59. Измеритель скорости морских течений

После проявления пленки можно составить представление о скоростях и направлении морского течения за неделю. Описанными примерами, конечно, не исчерпываются возможные применения ультразвуковых измерителей скоростей потоков. Эти приборы, несомненно, найдут себе широкое применение в самых различных областях человеческой деятельности.

Измеритель толщины

Ультразвуки широко применяются при определении размеров тел. На рис. 60 изображен сконструированный В. С. Соколовым прибор, позволяющий весьма точно измерять толщину предметов, сделанных из металла, пластмассы, дерева и т. п.

Рис. 60. Ультразвуковой измеритель толщины

К металлической стенке, толщину которой желательно измерить, прижимается специальный излучатель. Частота излучаемой волны плавно изменяется. Если частота колебаний излучателя равна собственной частоте колебаний стенки или кратна ей, то колебания, совершаемые стенкой, будут особенно интенсивны.

Колебания, совершаемые кварцевой пластинкой, превращаются особым приспособлением в звуковые волны. Это дает возможность определить интенсивность колебаний стенки и на слух. Для каждого материала прибор имеет свою шкалу, градуированную непосредственно в сантиметрах. При параллельных и гладких стенках ошибка в измерении толщины составляет доли процента. Если поверхность неровная, ошибка увеличивается до 2–5 процентов.

Этим прибором можно производить измерения и в том случае, если противоположная излучателю поверхность стенки граничит с жидкостью. Так удается проверять толщину стенок водопроводных труб, не нарушая работы водопровода. Вполне возможно также создание аппарата, который позволит определять толщину накипи на стенке парового котла, не прерывая его работы.

Прибор открывает возможности для измерения так называемой разностенности труб (различия в толщине стенки трубы, измеренной по ее сечению). На рис. 61 изображено сечение стенок трубы, определенное при помощи ультразвукового измерителя толщины.

Рис. 61. Разностенность труб

Ультразвуки позволяют определять неоднородности в стекле, измерять упругие свойства различных сортов стекла. Изучая изменение скорости распространения ультразвуков в твердых телах, можно исследовать превращения, которые в них происходят при изменении температуры или намагниченности тела (в ферромагнитных телах), переходы от одной структуры твердого тела к другой и т. п.

Незадолго до своей смерти профессор С. Я. Соколов сделал новое замечательное изобретение. Сконструированный им прибор дает возможность рассматривать в увеличенном виде предметы, заключенные в непрозрачную для света оболочку; даже тончайший слой воздуха, образовавшийся под слоем серебра в посеребренной пластинке, может быть безошибочно обнаружен этим прибором.

Глава 7.

УЛЬТРАЗВУКОВОЙ МИКРОСКОП

Ультразвуковая оптика

Для того чтобы понять действие ультразвукового микроскопа, вспомним те свойства световых лучей, которые используются в обычном оптическом микроскопе.

Если на пути солнечных лучей поставить двояковыпуклое стекло, произойдет преломление лучей и они соберутся в одной точке, в фокусе. Линзы дают возможность управлять движением лучей света и получать изображения предметов, увеличенные во много раз. В различных веществах световые лучи распространяются с различной скоростью. Именно эта разница в скоростях распространения и является причиной преломления лучей.

Распространение ультразвуковых волн подчиняется тем же самым законам, что и распространение световых волн. Ультразвуковая волна может отражаться и преломляться так же, как отражаются и преломляются световые волны. С помощью специальных ультразвуковых линз и собирающих зеркал физики научились управлять движением ультразвуковых волн.