Выбрать главу

Скорость ультразвука в жидкости, называемой четыреххлористым углеродом, значительно меньше, чем в воде, Приготовив из тонкой алюминиевой фольги кожух в форме двояковыпуклой чечевицы и наполнив его четыреххлористым углеродом, мы получим ультразвуковую линзу. Такая линза будет собирать идущие в воде ультразвуковые лучи в одну точку. Однако в воздухе эта линза будет рассеивать ультразвук, делать волну расходящейся, так как скорость звука в четыреххлористом углероде значительно больше, чем в воздухе.

Обычно ультразвуковые линзы делают из твердых веществ. При этом необходимо помнить, что скорость звука в твердых телах значительно больше, чем в жидкостях или газах. Этим объясняется то, что собирающие ультразвуковые линзы в этом случае имеют форму вогнутых, а не выпуклых чечевиц. Рассеивающие же линзы должны быть выпуклыми. На рис. 62 изображена ультразвуковая линза из пластической массы, известной под названием плексигласа. Для лучшей передачи колебаний кварцевая пластинка 1 плотно прижимается к плоской поверхности собирающей линзы 3. Передняя полость 2 наполняется водой и заклеивается тонкой металлической фольгой. Такое устройство предохраняет плексиглас от действия тех жидкостей, в которые погружена линза.

Рис. 62. Собирающая ультразвуковая линза

Собираемые линзой ультразвуковые колебания можно значительно усилить, если расположить излучающую кварцевую пластинку на наполненном воздухом барабанчике, а барабанчик затянуть тонкой металлической фольгой. Тогда ультразвуковые колебания будут отражаться от поверхности, граничащей с воздухом, и направляться почти целиком в сторону линзы.

Для изучения преломления ультразвуковых лучей удобно воспользоваться вызываемой ими оптической неоднородностью жидкости, в которой они распространяются. Применяя вместо прерывистого освещения источник света постоянной яркости, мы получим изображение ультразвуковой волны в виде светлого луча. Именно так сфотографирован ультразвуковой луч, создаваемый в жидкости колеблющейся кварцевой пластинкой (рис. 63).

Рис. 63. Параллельный пучок ультразвуковых лучей

Расположив на пути этого луча выпуклую линзу из плексигласа, можно сделать его расходящимся (рис. 64). Наоборот, вогнутая линза соберет его в одну точку (рис. 65).

Рис. 64. Ультразвуковой луч, рассеянный линзой
Рис. 65. Фокусированный луч

Собирая в одну точку распространяющиеся в масле сравнительно слабые ультразвуковые колебания, линза настолько увеличивает их интенсивность, что на поверхности масла возникает высокий фонтан, вытянутый вверх в виде узкой струйки.

По мере уменьшения длины волны ультразвука сходство в поведении ультразвуковых и световых лучей возрастает. Современная ультраакустическая техника дает возможность получать ультразвуковые волны, близкие по длине к волнам видимого света.

С помощью таких ультразвуков удалось осуществить акустическое «изображение» различных предметов. Полученное изображение можно при желании увеличить. Эти-то свойства ультразвука и были использованы при устройстве ультразвукового микроскопа.

Как устроен ультразвуковой микроскоп

На рис. 66 рассматриваемый предмет — изогнутая проволочка 2 — помещен в ванну, наполненную жидкостью. На него падает пучок коротких ультразвуковых волн, посылаемых кварцевой пластинкой 1. Отраженные ультразвуковые колебания фокусируются акустической линзой 3, и на приемной кварцевой пластинке 4 получается изображение предмета. При акустическом изображении светлым участкам оптического изображения будут соответствовать участки, на которые падают наиболее интенсивные ультразвуковые колебания, оказывающие на пластинку большее давление, сильнее воздействующие на нее.

Рис. 66. Схема действия ультразвукового микроскопа

Теперь задача заключается в том, чтобы превратить скрытое акустическое изображение в видимое. Это удается осуществить, воспользовавшись зависимостью электрических свойств кварцевой пластинки от давления. В результате давления на приемной пластинке возникают электрические заряды. Чем больше интенсивность падающих на пластинку ультразвуковых колебаний, тем больше воздействие их на нее, а следовательно, тем сильнее возникающий электрический заряд. Распределение электрических зарядов на пластинке будет соответствовать тому самому изображению рассматриваемого предмета, которое и надо сделать видимым.