Прозрачность воды примерно такая же, как и прозрачность керосина, поэтому оптическими методами трудно получить изображение капелек воды в керосине. Взгляните на рис. IV, б. Ультразвуковой микроскоп обнаружил капельки воды в керосине, и каждая капелька как бы обведена четкой белой рамкой.
Особенно велико значение ультразвукового микроскопа при отыскании дефектов в металле. Даже скрытый глубоко под поверхностью металла изъян не ускользнет от его зоркого глаза. На рис. IV, а показаны ультразвуковые изображения дефектов, обнаруженных на глубине 600 и 110 миллиметров.
Если ультразвуковое изображение наблюдают на поверхности жидкости, оно оказывается выпуклым, как бы объемным. Именно так было получено изображение слова «Москва» (рис. 75), буквы которого были сделаны из тонкой проволоки.
Замечательные свойства ультразвукового микроскопа, о которых мы рассказали, и в первую очередь возможность с его помощью рассматривать в увеличенном виде предметы, скрытые от человеческого взора толстым слоем непрозрачного вещества, обеспечивают широкое применение этого прибора в самых разнообразных областях науки и техники.
То, что рассказано в этой книге, не исчерпывает всех применений ультразвука. Мало рассказали мы об использовании ультразвуков в научных исследованиях. Так, например, изучая распространение ультразвука в газах, можно исследовать процессы, происходящие при соударении газовых молекул. Физики знают, что при этом молекулы переходят в особое «возбужденное» состояние. Исследовать подробности процесса, выяснить время жизни возбужденной молекулы, влияние различных добавок к газу и целый ряд других интересных вопросов позволяют ультразвуки.
Ультразвуки помогают следить за ходом химических реакций, узнавать состав различных смесей.
Изучение неслышимых звуков развивается настолько быстро, что почти каждый номер различных физических журналов приносит известия о новых достижениях в деле изучения свойств ультразвуков и их использования на помощь человеку.
Ультразвуки все шире применяются в различных областях человеческой деятельности. Уже сейчас их с успехом используют в своей работе не только физики, но и химики, биологи, инженеры, врачи…
В многочисленных лабораториях институтов ученые открывают все новые и новые способы использования ультразвуков для блага человечества.
Приложение.
УСТРОЙСТВО ПРОСТЕЙШИХ УЛЬТРАЗВУКОВЫХ ГЕНЕРАТОРОВ
После выхода из печати первого издания этой небольшой книги было получено много писем, в которых читатели спрашивали, как можно устроить ультразвуковой генератор. Учитывая большой интерес к ультраакустике, автор дополнил новое издание описанием конструкции простейшего пьезоэлектрического генератора. Приводимые ниже схемы отнюдь не претендуют на техническое совершенство, что может быть оправдано их простотой и тем, что в опытных исследованиях стоимость ультраакустической энергии и, следовательно, коэффициент полезного действия генератора не играет решающей роли.
Необходимо, однако, предупредить читателей о том, что работа пьезоэлектрических генераторов связана с получением относительно высоких электрических напряжений, иногда представляющих опасность для человеческой жизни. Поэтому при устройстве, если так можно выразиться, «любительских» ультразвуковых генераторов рекомендуется ограничиться применением обычных приемно-усилительных ламп, требующих напряжения 250 вольт. В этом случае устройство ультразвукового генератора будет представлять опасность, не большую, чем устройство лампового радиоприемника. Устройство мощных пьезоэлектрических излучателей, требующих напряжений порядка нескольких тысяч вольт, возможно только при наличии соответствующих знаний и при соблюдении необходимых мер предосторожности.
Схема очень простого генератора, вполне надежного в работе, изображена на рис. 76.