Но можно увеличить размах колебаний пластинки.
Проделаем такой опыт: привязав к нитке небольшую гирьку, заставим ее совершать колебания. По секундной стрелке часов заметим тот момент, когда гиря пройдет через положение равновесия, и, отсчитав 20 качаний, узнаем, сколько для этого требуется времени. Затем, толкнув гирю посильнее, увеличим размах ее колебаний. Окажется, что и при большем размахе для 20 колебаний потребуется ровно столько же времени. В нашем опыте гирька совершала свободные колебания, и мы убедились, что частота свободных, или, как говорят, собственных, колебаний тела не зависит от размаха, или, что то же, от амплитуды колебаний.
Но от чего же зависит частота собственных колебаний?
Достаточно укоротить или удлинить нить, на которой висит гиря, как частота собственных колебаний гирьки изменится. Чем короче подвес, тем больше будет частота колебаний.
Каждое колеблющееся тело обладает характерной для него частотой собственных колебаний. Так, например, если толкнуть качели, они начнут раскачиваться с совершенно определенной частотой. Подталкивая их, можно увеличить размах качаний. Чтобы сделать размах качаний особенно большим, надо, как вы знаете, подталкивать качели «в такт» их колебаниям, то есть с той частотой, с которой они совершают колебания, будучи предоставлены самим себе. Эту частоту называют резонансной частотой. Всякое колеблющееся тело имеет свою собственную резонансную частоту. В тех случаях, когда вызывающая колебания сила изменяется с резонансной частотой, размах совершаемых телом колебаний делается особенно большим. История знает случай, когда небольшой отряд солдат, проходя по мосту и четко отбивая шаг, случайно попал в резонанс с колебаниями моста, В результате резонанса колебания моста настолько возросли, что мост разрушился.
Если смену электрических зарядов на гранях кварцевой пластинки производить с резонансной частотой, то при том же самом электрическом напряжении размах колебаний возрастет и мощность ультразвука увеличится.
Каждая пластинка имеет свою собственную резонансную частоту.
Чем тоньше пластинка, тем выше ее резонансная частота. У пластинки толщиной в 1 миллиметр она составляет 2,88 миллиона колебаний в секунду, а при толщине 0,5 миллиметра — 5,76 миллиона колебаний в секунду. Можно изготовить пластинку тоньше папиросной бумаги. Резонансная частота такой пластинки будет очень велика, но столь тонкие пластинки очень непрочны, и их редко употребляют.
Итак, мы видим, что для получения ультразвука исключительно большое значение имеют пластинки, обладающие пьезоэлектрическими свойствами. Поэтому посвятим несколько слов тем материалам, из которых они изготовляются.
Кварц является одним из самых распространенных минералов. Обычный песок состоит из маленьких крупинок кварца. Часто встречается кварц и в булыжнике, которым до сих пор еще мостят дороги. Если песок нагреть до очень высокой температуры, то он сплавится, образуя прозрачное кварцевое стекло, которое широко применяется в химических лабораториях.
Казалось бы, недостатка в материале для постройки излучателей ультразвука нет.
На самом деле это не так.
Кварцевое стекло пьезоэлектрическими свойствами не обладает и потому не может быть использовано для устройства излучателей ультразвуковых волн.
Пьезоэлектрическими свойствами обладают только кристаллы кварца; но крупные кристаллы этого минерала встречаются очень редко, и пластинки с большой поверхностью поэтому дороги.
Замечательным достижением науки является разработанный недавно способ искусственного выращивания больших кристаллов кварца. Выяснилось, что их можно выращивать так же, как выращивают кристаллы поваренной соли, квасцов и других растворимых в воде веществ.
На первый взгляд может показаться странным, каким образом из такого стойкого, нерастворимого в воде материала, как песок или булыжник, выращивают красивые кристаллы горного хрусталя — кварца. Конечно, при обычных условиях это сделать невозможно.
Для этого в специальный толстостенный сосуд, наполненный водным раствором некоторых химических веществ, подвешивают на нити палочку из кварцевого стекла, а ниже помещают маленький кристаллик кварца (рис. 8). Сосуд закрывается, и температура в нем поднимается несколько выше 350° C; при этом давление в сосуде сильно возрастает.