Выбрать главу

Фотоэлектрические свойства цезия позволили создать интроскоп - прибор, позволяющий заглянуть внутрь непрозрачных тел и заметить в них возможные дефекты. Чувствительность цезия к инфракрасным лучам лежит в основе конструкции "ночезрительных труб"-так М. В. Ломоносов называл приборы, о которых он мог только мечтать. А сегодня оптический "глаз", способный видеть в темноте, помогает человеку ночью вести автомобиль, прицельно стрелять, обнаруживать различные объекты.

До сих пор речь шла о фотоэлектрическом эффекте, но цезий готов поделиться своими электронами "по просьбе" не только света, но и тепла. Благодаря этому свойству он охотнее многих других химических элементов переходит в состояние ионизированного газа - плазмы. Цезиевая плазма представляет огромный научный и практический интерес. В космическом пространстве, например, где степень разрежения очень высока, поток электронов, выделяемых атомами цезия, способен создавать мощную реактивную тягу и придавать ракетам колоссальную скорость по расчетам некоторых зарубежных ученых, до 44 километров в секунду! Возможно, недалек уже тот час, когда межпланетные корабли на цезиевом "топливе" будут заходить в самые далекие порты и гавани Вселенной.

Но цезиевая плазма не теряет времени даром и уже вовсю трудится на Земле. С ее помощью магнитогидродинамические генераторы (МГД-генераторы) преобразуют тепловую энергию в электрическую. Одно из многих достоинств этих генераторов их простота: единственная движущаяся "часть" в них - поток ионизированного газа, как бы исполняющего обязанности вращающегося ротора. Без цезия не обходятся и термоэмиссионные преобразователи (ТЭП), в которых тепловая энергия ядерного реактора без задержки превращается в электрический ток. Первая мощная установка такого типа - "Топаз" действует в нашей стране.

Цезий отнюдь не обделен вниманием науки: ученые различных стран проводят множество исследований, главный объект которых - цезий. Несколько лет назад физики Билефельдского университета (ФРГ) проделали любопытный эксперимент. Длился он всего десятую долю секунды, а на его подготовку понадобилось... два года. В чем же он заключался? На специальной установке атом цезия был подвергнут бомбардировке сфокусированным импульсом мощного лазера. В результате такого обстрела атом цезия пришел в состояние "крайнего возбуждения": орбиты электронов растянулись и размеры атома увеличились в десятки тысяч раз.

Группа американских физиков из Ок-Риджа (одного из важнейших центров атомной промышленности США) разработала методику, позволяющую пересчитать поштучно атомы некоторых элементов. В основе этой методики также лежит возбуждение атомов с помощью мощных лазерных импульсов. При первой демонстрации нового способа подсчитывались атомы цезия.

Ученые из индийского Института геофизических исследований, изучившие воду 60 горячих источников в Гималаях, пришли к выводу, что высокая концентрация цезия в воде может быть признаком магматической активности недр. Повышенная концентрация радиоактивного изотопа цезия-137 обнаружена в деревьях, сохранившихся в районе знаменитого Тунгусского взрыва, причем химическая аномалия характерна как раз для тех слоев ствола, которые относятся к 1908 году, когда произошло это событие.

Нельзя не упомянуть еще об одном очень важном "амплуа" этого элемента. В 1967 году Международная генеральная конференция по мерам и весам установила: "Секунда - время, равное 9192631770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133". Коротко и ясно! Хотите отсчитать секунду, так это проще пареной репы: нужно только подождать, пока электрон цезия перепрыгнет с одной своей орбиты на другую указанное число раз. Конечно, человеку такой подсчет проделать, мягко выражаясь, трудновато, а вот атомные часы на этом принципе уже работают и, надо сказать, неплохо: за три тысячелетия точность их хода может измениться всего на одну секунду. Это возможно благодаря необыкновенной стабильности основных свойств атомов цезия.

О цезии можно рассказывать тысячу и одну ночь: о его каталитических способностях и умении создавать вакуум в радиолампах, о его изотопах, применяемых в медицине, дефектоскопии, измерительной технике, о получении с помощью этого элемента сцинтилляционных монокристаллов, способных светиться холодным голубоватым или зеленоватым светом под действием любого излучения рентгеновского, ультрафиолетового, радиоактивного. Словом, областям применения цезия, как говорится, несть числа. А перспективы его поистине безграничны!

УДАЧА САПОЖНИКА ИЗ БОЛОНЬИ (БАРИЙ)

"Болонский самоцвет". - "Тяжелый", но... легкий. - Опыты в "угленом" тигле. - "Буйный нрав". - Нелегальная деятельность. - "Раскрыть это зло..." В банкнотах и облигациях. - "Легкий завтрак. - Загадочные лучи. - На смену рыбьей чешуе. - Зеленый вклад. - "Прививки" сфинксу. - Не зная равных. - Кто же прав? - Соль в огне. - Есть ли вакансии? - Кристаллы меняют цвет. - На ошибках учатся. - С ювелирной точностью. - В магнитном поле. - Открытие аптекаря. - "Незаурядные способности". - Что мешает карьере? - В небе над Колумбией.

История этого элемента уходит истоками в далекое средневековье, когда в Европе повсюду бушевали алхимические страсти, разжигаемые идеей получения золота из "недефицитных" материалов.

В 1602 году болонский сапожник и по совместительству алхимик Касциароло подобрал в окрестных горах камень, который оказался настолько тяжелым, что не заподозрить в нем присутствие золота мог только полный профан. Но Касциароло был не таков. Перед ним засияли радужные перспективы, и он, притащив находку в свою сапожно-алхимическую мастерскую, тут же принялся за работу.

Для начала решено было прокалить камень с углем и олифой. И хоть выделить золото при этом почему-то не удалось, опыт принес явно обнадеживающие результаты: охлажденный продукт прокаливания светился в темноте красноватым светом.

Будучи человеком общительным, Касциароло не стал скрывать от своих коллег-алхимиков тайну необычного камня. Это сенсационное сообщение привело золотоискательскую братию в состояние поисковой горячки: найденный минерал, получивший ряд названий-"солнечный камень", "болонский камень", "болонский самоцвет", стал главным участником всевозможных реакций и экспериментов. Но время шло, золото и не думало выделяться, и интерес к новому минералу постепенно пропал.

Лишь спустя полтора столетия, в 1774 году, известные шведские химики Карл Шееле и Юхан Ган подвергли "болонский камень" тщательному исследованию и установили, что в нем содержится особая "тяжелая земля", которую сначала назвали "барот", а затем - "барит" (от греческого слова "барос"-тяжелый). Сам же металл, образующий эту "землю", был наречен барием.

В 1808 году англичанин Гэмфри Дэви электролитическим путем выделил из барита металлический барий. И поскольку он оказался сравнительно легким металлом (плотность 3,7 г/см3), английский химик Кларк предложил сменить название "барий", не соответствующее его истинному положению среди других металлов, на "плутоний" - в честь мифического властителя подземного царства бога Плутона. Однако предложение Кларка не встретило поддержки у других ученых, и легкий металл продолжал именоваться "тяжелым" (в русской химической литературе начала XIX века этот элемент иногда фигурировал под названием "тяжелец"). Заметим, что по современной технической классификации барий действительно самый тяжелый представитель группы... легких металлов.

В наши дни металлический барий - мягкий белый металл - получают алюминотермическим восстановлением его окиси. Впервые этот процесс осуществил русский физико-химик Н. Н. Бекетов, положивший тем самым начало алюминотермии. Вот как ученый описывает свои опыты: "Я взял безводную окись бария и, прибавив к ней некоторое количество хлористого бария, как плавня, положил эту смесь вместе с кусками глиния (т. е. алюминия - С. В.) в угленой тигель и накаливал его несколько часов. По охлаждении тигля я нашел в нем металлический сплав уже совсем другого вида и физических свойств, нежели глиний. Этот сплав имеет крупнокристаллическое строение, очень хрупок, свежий излом имеет слабый желтоватый отблеск; анализ показал, что он состоит на 100 ч из 33,3 бария и 66,7 глиния или, иначе, на одну часть бария содержал две части глиния..."

Сейчас этот процесс проводится в вакууме при 1100 - 1200°С. Одновременно с восстановлением окиси бария алюминием происходит дистилляция восстановленного бария, который затем конденсируется в чистом виде.