Выбрать главу

Таков в самом общем виде арсенал средств для решения инженерно-геоморфологических задач (рис. 7). Естественно, что для инженера, проектировщика, землеустроителя, да и для геолога и географа наиболее понятен язык картографических моделей (в том числе построенных ЭВМ), отражающий характеристику рельефа в аналитических оценках.

Любые инженерно-строительные проекты заканчиваются составлением характеристик, таких, как срок и условия эксплуатации, устойчивость к воздействию погодных и геологических факторов, перечень необходимых средств защиты, т. е. заключением о режиме и продолжительности эксплуатации инженерного сооружения. Инженерно-геоморфологические работы пока заканчиваются заключениями о состоянии рельефа. В лучшем случае дается вероятностный прогноз (как правило, качественный) развития рельефа. В этом отношении необходимы поиски наиболее разработанного аппарата построения карт для инженерных целей. Весьма полезно обратиться к опыту смежных наук. И прежде всего к геофизике. Характерной чертой геофизики является разработка теории и методов изучения физических полей с использованием мощного математического аппарата, заложение основ картографического анализа полей. Геофизический подход ж концепция поля, развивающаяся на его основе, позволяют вводить в географо- (геоморфолого-) картографическую практику новые оригинальные карты, изображающие варьирование явлений, анизотропию, напряженность полей и др. В геоморфологии уже используются такие карты полей, как карты энергии рельефа [13].

[13 Карты полей динамики и взаимосвязи явлений. Иркутск, 1980. С. 7-15; 15 - 27.]

Использование карт полей должно стать одним из основных направлений инженерно-геоморфологических исследований. Это направление, по мнению К. К. Маркова, является «сквозным географическим направлением» (можно сказать, и геолого-географическим). К. К. Марков видит его сущность в изучении физических свойств (массы и энергии) географической оболочки, стало быть, и рельефа, его инженерных свойств.

Инженерная геоморфология, более чем какое-либо другое направление геоморфологии, должна быть основана на анализе количественных показателей развития рельефа, показателей его взаимоотношений с техногенными элементами, количественных показателей баланса вещества и энергии, т. е. на анализе количественных показателей инженерных свойств рельефа.

Итак, инженерная геоморфология - наука об инженерных свойствах рельефа. Знания о таких свойствах позволят планировать, прогнозировать развитие «инженерных» отношений рельефа с остальными компонентами городской среды.

По мнению Н. А. Флоренсова и С. С. Коржуева, рельеф способен развиваться, изменяться, внося в природу свои особые возможности. Изучение рельефа с точки зрения его развития и его особых (часто скрытых) потенциальных возможностей, реализуемых только в условиях интенсивного техногенного воздействия, прогноз развития техногенного рельефа и управление - выбор оптимального пути изменения рельефа, направленного на создание устойчивого к техногенному воздействию рельефа (морфо-литосистемы), - вот то, чем должна заниматься «инженерная геоморфология».

Глагол «ingenier» в переводе с французского означает «проявлять изобретательность». К городскому рельефу это слово («инженер») подходит как нельзя лучше, так как созданный на природной основе, он, по существу, является «изобретенным» природно-техногенным образованием.

Каким же должен быть рельеф города? Городской рельеф должен соответствовать требованиям динамического равновесия, т. е. обеспечивать течение экзогенных процессов с наименьшим ущербом для города. Что имеется в виду? В системе важны не все возможности ее элементов, а те, что позволяют системе функционировать. Говоря о техногенной системе, следует добавить: функционировать в нужном направлении (в заданном режиме) - обеспечивать устойчивую последовательность постоянно действующих процессов передачи энергии, вещества и информации для сохранения того или иного характерного для значительного отрезка времени состояния морфолитосистемы.

Поясним эту мысль на примере освоения долинного рельефа.