Выбрать главу

Ещё хотелось бы "на пальцах" объяснить, почему пробное тело одинаково притягивает тела разной массы. Ну, в смысле, почему тела с разными массами, находясь на равном удалении от пробного тела, имеют одно и то же ускорение свободного паденья на него. Такое оттого, что любое из этих − так называемых притягиваемых − тел на самом деле находится в состоянии покоя (ну, неизменяющейся своей инерционности, сказать шире), а потому масса его не работает, тем самым получая возможность быть взятой какой угодно (всё равно ведь в разбираемой ситуации не "приложит руку" к движенью тела). В скрытой от глаз действительности меняет свою инерционность (ну, переменно движется) лишь притягивающее тело (наше пробное, то есть), вот его-то масса − как то, что проявляется переменным движением − в ситуации всё и определяет! Ну, в смысле, пробное тело квáзидвижется: чем ближе к себе, тем больше затрудняя пространству прирост, этим фактически подтягивает себя к любому отстоящему от него в пространстве телу. Чисто явочным порядком оказывается всё более близким к нему − из-за "выкачки" своим присутствием пространства меж собой и им! В самом деле, бóльшая недопускаемость новопространственности ближе к себе, да при меньшей дальше от себя, − чтó это, как не эквивалент откачиваемости от себя пространства, ежели из-за такой неравной допускаемости − ближе к тебе пространства в любой берущийся момент обнаруживается меньше, чем было бы, не срабатывай та неравная допускаемость? И вот, наводя картину как бы некоторой выкачанности пространства меж собой и другим телом, тем наше пробное фактически подставляет себя всё ближе к тому другому телу (ибо без пространства меж ними, пробным и "притягиваемым" телами, ситуация в самом принципе не способна быть: если между собой и чем-то вы убрали − в частности, "выкачали"! − пространство, то просто обязаны оказаться пространственно ближе к тому чему-то, а не так, чтоб оказывалось, что по соединяющей вас с ним линии наличествуете вы, затем не-пойми-что на месте только что убранного вами пространства, затем оставшееся пространство, до которого вы не дотянулись "выкачать", а за ним наконец то нечто, тот веховый объект, с которым вы пространственно соотносились до "откачки"). Ясно? И уж каким по выраженности "качателем" выступит пробное тело − то всецело определяется его массой. Ну, в смысле, лишь его массой, и больше ничем: больше масса, больше и выраженность как "качателя". Оттого и в формуле a = GM/r 2 , определяющей ускорение силы тяжести для тел в районе пробного тела, фигурирует только масса последнего ( M).

Но давайте, однако, посчитаем ускорения тел в окрестности пробного тела, и посмотрим во что нас упирают расчёты. Не мудрствуя, в качестве пробного берём Землю. Ускорение силы тяжести на уровне моря − 9,81 м/сек

2. В самом деле, в вышеприведенную формулу в качестве Mподставляем массу Земли 5,97 × 10 24кг, в качестве r− средний земной радиус 6,37 × 10 6м, и при гравитационной постоянной G= 6,672 × 10 11м 3/кг∙сек 2получаем: 6,672 × 5,97 × 10 24м 3∙кг / 10 11× (6,37 × 10 6) 2кг∙сек 2∙м 2= 9,81 м/сек 2. А далее − формула g h = g 0 (R з /R з +h) 2 , где g 0 ускорение силы тяжести на уровне моря, g h − оно же на высоте hнад уровнем моря, и R з − средний земной радиус. Найдём g h для h = R з . Получается g h = g 0 (R з /2R з ) 2 = g 0 (1/2) 2 = g 0 /4 =9,81/4 = 2,4525 м/сек 2. Соответственно, для h = 2R з получается g h = g 0 /(1/3) 2 = g 0 /9= 1,09 м/сек 2, а для h = 3R з получается g h = g 0 /16= 0,613 м/сек 2. Как видим, ускорение свободного падения, сообщаемое телам Землёй, последовательно растёт − по мере помещаемости тех тел ближе к Земле. Отчего остаётся только повторить уже говаривавшееся: телам, находящимся в окрестностях Земли, последняя сообщает суперускорение свободного падения. Давайте прикинем его значение. Может быть, нынешняя физика способна вычислить его и точно, однако я не вникал, поскольку для наших целей достаточно и прикидки − по предлагаемому ниже способу. Первую точку берём на уровне моря, вторую − на высоте в земной радиус над морем. Соответственно, разность ускорений свободного падения, характерных для тел в этих точках, будет Δg = 9,81 − 2,4525 = 7,356 м/сек 2, а среднее значение такового ускорения на интервале между точками ( g ср ) оказывается (9,81 + 2,4525) / 2 = 6,132 м/сек 2. Ну и путь, который тело проходит между точками, равен радиусу Земли. Тогда по формуле t = (2R з /g ср ) 1/2 находим время, за которое тело прошло бы этот путь, на всём его протяжении двигаясь с найденным средним ускорением. То есть: t= ( 2× 6,37 × 10 6/ 6,132) 1/2= 1441,4 сек. Это время прикидочно и будет временем, за которое в реале тело проходит расстоянье меж нашими точками, на участке меж ними свободно падая со всё большим ускорением. Ну и разделив разность ускорений (как значение прироста ускорения для тел при переходе от дальней точки к ближней!) на это прикинутое время (как время, за которое сей прирост происходит), получаем значение суперускорения свободного падения: g sup = Δ g/t =7,356 / 1441,4 = 0,0051033 м/сек 3. То есть ускорение свободного падения получилось увеличивающимся примерно на 5 мм/сек 2за секунду. Прекрасно, но этак же посчитав суперускоренье за счёт интервала меж точками, дальше отстоящими от центра Земли (первую взяли на расстоянии в два земных радиуса от него, а вторую − в три), получаем значение в 0,0005078 м/сек 3. Которое заметно меньше первого. А это значит, что по мере размещаемости тел ближе к ней, Земля сообщает им большее и суперускорение, а не только большее ускорение! То есть, в своём свободном падении на Землю тела приближаются к ней с увеличивающимся даже суперускорением, а не то что только с увеличивающимся ускорением! Чем получается, что надо говорить о степени "суперности" у суперускорения! Ну, увеличивающесть суперускорения, организуемая Землёй в своих окрестностях для тел − по мере их к ней приближения, есть факт находящести тех тел при суперускорении второй степени суперности (g sup2 ). Которое мы можем прикинуть всё по тому же, в общем, способу: разность суперускорений, наличных у тел в разноудалённых от Земли точках, делим на время прохода телом интервала между точками − в равноускоренном движении на среднем для интервала ускорении свободного падения. Такие точки у нас − это точки с высотой над уровнем моря в два радиуса Земли и в три её радиуса, лежащие на линии, проходящей через центр Земли. Расстоянье между ними равно земному радиусу, разница между суперускорениями в них − соответственно 0,0051033 − 0,0005078 = 0,004595 м/сек 3, а среднее меж ними ускорение свободнопадания у тел находится как (2,4525 + 1,09) / 2 = 1,77125 м/сек 2. Откуда t = (2R з /g ср ) 1/2 = (2 × 6,37 × 10 6/ 1,77125) 1/2= 2682,9 сек и g sup2 = Δ g sup /t =0,0045955 / 2682,9 = 0,0000017 м/сек 4. Это значение суперускорения второй степени, наличного в любой из точек, имеющих высоту в три земных радиуса над уровнем земного моря.