Как правило, теория хаоса ограничивает то, что мы можем узнать о будущем. Но она может накладывать ограничения и на то, что мы можем знать о прошлом. Мы видим результаты, но, чтобы вывести из них причины, нужно было бы решить уравнения в обратную сторону. В отсутствие полных данных один и тот же принцип действует как в прямом, так и в обратном направлении. Мы можем обнаружить две существенно различающиеся начальные точки, способные привести к очень сходным результатам. Но мы не сможем узнать, из которой из таких отправных точек мы произошли.
Одна из величайших загадок эволюционной биологии касается самого начала развития жизни. Возможно, игра жизни благоприятствует выпадению шестерок на игральных костях эволюции, но как появилась сама эта игра? Была оценена вероятность случайного образования условий, необходимых для возникновения самовоспроизводящихся клеток. В некоторых моделях получается, что возникновение жизни эквивалентно 36 броскам игральной кости, в каждом из которых выпадает 6. Некоторые видят в этом доказательство необходимости существования создателя, подтасовавшего результаты игры. Однако они не сознают, о каком гигантском временном масштабе тут идет речь.
Чудеса бывают… если ждать их достаточно долго. На самом деле было бы удивительнее, если бы такие странные аномалии не случались. Дело в том, что аномалии часто бывают более видны. Их замечают, а на менее необычные результаты зачастую никто не обращает внимания.
Появление чудес в случайном процессе удобно рассмотреть на примере лотереи. 6 сентября 2009 г. в болгарской государственной лотерее выиграли следующие номера:
4, 15, 23, 24, 35, 42.
Четыре дня спустя выпали те же шесть номеров. Казалось бы, невероятное событие. Болгарское правительство тоже так решило и немедленно назначило расследование возможной коррупции. Однако правительство не учло того, что по всей планете каждую неделю проводится множество разных лотерей. Их проводят многие десятилетия. Если посчитать, получится, что удивляться скорее следует отсутствию таких поразительных на первый взгляд результатов.
Тот же принцип действует и в отношении условий возникновения самовоспроизводящихся молекул в первичном бульоне, из которого состояла Земля до появления жизни. Стоит смешать достаточно большое количество водорода, воды, углекислого газа и некоторых других органических газов и подвергнуть их воздействию молний и электромагнитного излучения – и даже в лабораторном опыте можно наблюдать возникновение органических материалов, встречающихся только в живых существах. Никому не удалось добиться самопроизвольного возникновения в лабораторных условиях чего-либо столь необыкновенного, как ДНК. Вероятность такого явления крайне мала.
Но в том-то и дело, потому что с учетом существования во Вселенной миллиарда миллиардов – или около того – планет, пригодных для проведения такого эксперимента, и наличия приблизительно миллиарда лет на его проведение было бы более удивительно, если бы такая предельно малая вероятность возникновения чего-то подобного ДНК не осуществилась. Бросая 36 игральных костей в течение миллиарда лет на миллиарде миллиардов разных планет, наверняка можно получить один бросок, в котором на всех 36 костях выпадут шестерки. А уж дальше полученная самовоспроизводящаяся молекула будет способна размножаться самостоятельно, так что для запуска эволюции необходима всего одна счастливая случайность.
Проблема человека в отношении оценки вероятности чудес – таких как возникновение жизни – состоит в том, что наш разум плохо приспособлен для обращения с очень большими числами. Поэтому наши интуитивные представления о вероятности хромают.
Фрактальное дерево жизни
Однако в эволюции действует не только математика вероятностей. Дерево эволюции само по себе обладает одним интересным качеством, делающим его сходным с формами, возникающими в теории хаоса; это качество называется фрактальностью.
Дерево эволюции дает картину развития жизни на Земле. Продвижение по нему соответствует продвижению во времени. Каждое ответвление дерева означает развитие нового вида. Если ветвь заканчивается, это означает вымирание данного вида. Природа дерева такова, что его общая форма, как кажется, повторяется все в меньшем и меньшем масштабе. В этом и состоит характерная черта объектов, которые математики называют фракталами. В увеличенном виде любая малая часть дерева выглядит поразительно похожей на более крупные его структуры. Такое самоподобие означает, что понять, на каком масштабе мы рассматриваем дерево, очень трудно. Такова классическая особенность фрактала.