На основании вновь открытого закона можно было заключить, что обычная масса тел природы, так сказать, их масса покоя (m0), связанная с эквивалентным ей количеством внутренней, неактивной энергии (E0), может превращаться в электромагнитную массу (mс), количественно равную ей, но качественно отличную от нее и связанную с активной формой энергии (Eс).
Таким образом, закон А. Эйнштейна давал возможность объяснить образование солнечной энергии не как превращение массы, а тем более материи, в энергию, но как результат превращения одного вида массы (m0) и связанного с ней вида энергии (E0) в другой вид массы (mс) и связанный с ним вид энергии (E0). При этом полностью соблюдались законы сохранения суммарной массы (∑m=const) и суммарной энергии (∑E=const). Так уже в рамках химико-электрической концепции и присущего ей ППБ был найден принципиальный ответ на интересующий науку вопрос.
Но оставался все же неясным тот конкретный механизм, посредством которого совершался такой процесс на Солнце и звездах. Ответ был найден лишь в рамках двусторонней концепции и связанного с ней ППБ. В 30-х годах? X. Бете сформулировал представление о так называемом «водородном цикле», который должен совершаться непрерывно на Солнце и звездах. В итоге совершения по стадиям такого цикла все становится на свои прежние места, с той только разницей, что четыре ядра водорода (четыре протона) синтезируются в одно ядро гелия (альфа-частицу). Так как масса исходных четырех водородов равна 4×1,008=4,032, а конечная масса гелия равна 4,003, то так называемый дефект массы (в атомных единицах) будет равен: Δт=0,029. Это и будет источником энергии небесных светил, так как в данном случае согласно закону А. Эйнштейна Δmс2=Ес, где с2 (квадрат скорости света) есть коэффициент огромной величины.
На этом примере мы видели, как «работает» ППБ, выполняя свою оградительную функцию: он не давал мысли ученых выходить за пределы достигнутой ими области (как это пытался сделать Джинс) и направлял их внимание на то, чтобы упорно искать ответа через более полное исчерпание именно данного, достигнутого уже уровня научного познания.
Итак, мы рассмотрели здесь эволюцию определенного барьера на основе сведений об общей эволюции учения о веществе. В ходе ее все время сохранялся основной стержень воззрений на химические элементы, нашедший свое выражение в менделеевском определении элемента через место в системе. Однако конкретная характеристика свойств элемента, которым приписывалось в одностороннем порядке определяющее значение, менялась на прямо противоположную. Сначала за таковые принимались химико-механические — атомный вес, или масса (тезис), затем совершался переход к одностороннему же признанию химико-электрических свойств в виде зарядов, и это достигалось путем отрицания предыдущего тезиса, то есть выступало в виде антитезиса. Наконец, снова совершался переход в свою противоположность, на этот раз в виде частичного возврата к исходному тезису, что приводило (путем повторного отрицания) к синтезу, или единству обеих противоположных сторон вещества. Здесь конкретизировалось замечание В. И. Ленина: «… «другое» как свое другое, развитие в свою противоположность».
Можно сказать, что все учение о веществе развивалось через внутреннее противоречие и что это проявилось в последовательном закономерном изменении соответствующего ППБ и способов его преодоления.
ГЛАВА 4
Комбинированный барьер как разобщение противоположностей
Разобщение вещества и света, прерывности и непрерывности. До сих пор мы рассмотрели два различных рода барьеров и их эволюции и соответственно этому эволюции способов их преодоления.
В главе 2 мы говорили о смене трех основных типов ППБ, каждый из которых относился к определенному уровню развития научного познания, причем в пределах каждого такого тина мы обнаруживали различное проявление одного и того же барьера в различных отраслях научного знания. В главе 3, по сути дела, мы прослеживали эволюцию одного и того же барьера, которая совершалась через отрицание отрицания, но так, что изменялось каждый раз конкретное выражение этого барьера. Теперь же мы обратимся к эволюции барьера третьего рода, который предполагает многосторонность, или многогранность самого ППБ, его как бы комбинированный характер. В силу такой его природы его преодоление осуществляется не сразу во всем его объеме, а как бы по частям, расчлененно. Собственно говоря, к этому, в сущности, и сводится вся «новейшая революция в естествознании».