Однако тщательное изучение черновых записей, сдеданных им во время открытия, и в особенности дешифровка хода разложенного им «химического пасьянса» убедительно доказали, что действительный ход открытия закона шел через сопоставление групп элементов, то есть через особенное ко всеобщему. Зачем же, спрашивается, автору таблицы потребовалось представить дело иначе?
Объяснение напрашивается само собой. Д. Менделеев, сделав открытие, стремился убедить химиков в его истинности, а для этого он, естественно, избрал самый короткий, легко проверяемый всеми логический путь: располагая элементы в один непрерывный ряд по величине атомного веса, каждый на собственном опыте сразу же может убедиться в периодической повторяемости их свойств.
То есть, это был умный дидактический прием хорошего педагога, каким и проявлял себя Д. Менделеев.
На этом примере мы видим, как различаются между собою два пути научной мысли: первый — ее движения к открытию, к познанию истины, второй — путь информации ученого о найденной истине, то есть путь доведения информации об этой мысли до сознания других людей, путь восприятия ими этой мысли.
Сопоставляя оба пути, мы можем на примере Д. Менделеева сказать, что второй путь может оказаться обратным первому. Так, мы видели, что у ученого первый путь завершился обнаружением периодичности элементов и сопоставлением их общего непрерывного ряда. А второй путь начался с составления такого именно ряда выявления в нем периодичности свойств элементов.
Теперь для того, чтобы убедиться в общности подобного соотношения между двумя путями движения научной мысли — к открытию истины и информации о ней, — рассмотрим подробно историю возникновения химической атомистики в работах Дж. Дальтона.
Ход открытия химической атомистики Дж. Дальтоном. Разберем последовательно работу творческой мысли Д. Дальтона. Он жил в эпоху начавшейся промышленной революции, когда паровая машина совершала свое торжественное шествие по странам Западной Европы и в особенности Англии; причем жил и творил он в Манчестере — центре английской текстильной промышленности.
Паровая машина и механизм ее действия не могли не привлечь внимания молодого ученого-самоучки. Его остро интересовал вопрос о том, как и почему работает в ней водяной пар. Но было еще и другое обстоятельство, которое привлекло его внимание к водяным парам: в ранней молодости он начал заниматься метеорологическими наблюдениями и тщательно вел записи о них вплоть до последнего дня своей жизни. А в этих наблюдениях большое место занимали показатели влажности атмосферы, наличия в ней водяных паров.
Этот вопрос занимал не только Дж. Дальтона, но и французских химиков из школы Лавуазье — Бертолле. Французские химики выдвинули чисто химическое объяснение процессов испарения и насыщения водяных паров. Они считали, что подобно тому, как вода растворяет сахар или соль, причем до определенного предела (насыщения), так и атмосферный воздух «растворяет», то есть втягивает в себя водяные пары и тоже до момента насыщения ими. Значит, заключили они, между воздухом и водяными парами существует определенное притяжение (взаимодействие), подобное химическому.
На этом основании они утверждали, что когда происходит смешение (диффузия) разных газов, то это объясняется их взаимным притяжением друг к другу.
Дж. Дальтон категорически отверг подобную концепцию. Представлению о химическом притяжении газов и паров он противопоставил механическую концепцию отталкивания частиц каждого газа друг от друга. В этом отношении он шел и от идей Ньютона, высказанных в «Математических началах натуральной философии» при объяснении И. Ньютоном закона Бойля об обратной зависимости между объемом и давлением воздуха.
Положению о том, будто разные газы тяготеют друг к другу Дж. Дальтон противопоставил положение, что они независимы между собою. Но почему же в таком случае один газ проникает в другой подобно тому, как частицы воды (ее пары) проникают в воздушную атмосферу? Дж. Дальтон отвечал: да потому, что частицы воды отталкиваются друг от друга, а воздух не играет здесь никакой роли, он только мешает свободному проникновению частиц воды в пространство, которое он занимает. И Дж. Дальтон экспериментально доказывал это: ведь если воздух действительно играет роль растворителя по отношению к воде, то чем больше мы его возьмем, тем больше воды он растворит, и наоборот. Между тем, если мы возьмем его вдвое меньше, то при испарении воды предел насыщения паров (при данной температуре и в данном объеме) будет тот же, как и при атмосферном давлении. Более того, это будет наблюдаться даже в том случае, когда воздух будет полностью удален, то есть испарение воды будет происходить в пустоту.