Таковы барьеры, рассчитанные на то, что привычка вычислять заставляет испытуемых, не задумываясь, применять арифметический прием автоматически, не вдумываясь в смысловую, содержательную сторону заданной им задачи.
Барьеры как нарочитое осложнение и запутывание. Продолжим анализ барьеров того же характера, рассчитанных на то, что испытуемый будет производить автоматически вычислительные операции. Особенность этих барьеров состоит в том, что в задачу преднамеренно вводятся посторонние, совершенно ненужные моменты с целью осложнить и запутать ее решение.
Разберем несколько таких задач. Вот одна из них: мне теперь столько лет, сколько тебе будет тогда, когда мне будет в два раза больше, чем тебе теперь. Сколько же нам лет? Эту задачу даже повторить бывает трудно, хотя она элементарно проста.
А вот другая аналогичная задача. Расстояние между А и В 600 километров. Из А в В вышел поезд и движется со скоростью 60 километров в час, а навстречу ему. из В и А — другой поезд со скоростью 40 километров час. Между обоими поездами летает стрекоза со скоростью 100 километров в час. Долетев до поезда, вышедшего из А, она тут же возвращается к поезду, вышедшему из В, и снова летит обратно и т. д., пока оба поезда не встретятся. Спрашивается: сколько километров пролетит стрекоза?
Барьер здесь толкает на то, чтобы прослеживать один за другим уменьшающиеся отрезки пути, которые проделывает стрекоза, и суммировать их. Между тем есть более простое решение, которое маскируется барьером, а именно: определить время до встречи поездов (и следовательно, время пребывания стрекозы в полете).
Совершенно аналогичный барьер мы встречаем в другой задаче: с определенной угловой скоростью вращается диск заданного диаметра. Вдоль его диаметра от одного края диска к противоположному непрерывно с постоянной скоростью летает муха, совершая причудливую траекторию. Спрашивается: какова будет длина проделанной мухой в течение часа траектории, если пренебречь временем посадки мухи на край вращающегося диска? Решение задачи и здесь сводится к учету времени полета мухи с известной скоростью.
Примером аналогичной запутанности условий может служить следующий. Дается задача: 7 рыбаков съедают 7 осетров в 7 дней. За сколько дней 100 рыбаков съедят 100 осетров? Барьер подсказывает — за 100 дней, тогда как ответ: за те же 7 дней.
Трамплином ко всем такого рода задачам служит один и тот же прием, а именно удаление, исключение из условий задачи того материала, который был введен в нее умышленно, чтобы осложнить ее решение и запутать испытуемого. Но для этого последний должен догадаться, что задающий ему задачу намеренно пытался его запутать.
Точно так же барьер в задаче с рыбаками, съедающими рыбу, легко преодолевается, если цифра 7 не будет повторяться 3 раза, толкая испытуемого на то, чтобы определить, сколько один рыбак съест рыбы в 1 день. Это легко сделать, если сказать, что 7 человек съедают 7 рыб за какую-то единицу времени (скажем, за неделю), следовательно, по 1 рыбе на человека. Отсюда прямо вытекает ответ на заданный вопрос.
Барьеры подмены разнородного. Оба предшествующих типа барьеров требуют порой длительного повторения вычислительных операций для своего формирования и хотя бы временного закрепления в сознании испытуемого. Напротив, барьеры, основанные на быстром переходе от приемов одного порядка к приемам совершенно иного порядка, могут возникать мгновенно, сразу же после первого испытания.
Таков барьер, основанный на смене приемов языкового общения, а именно звуковой речи на речь жестов. Задача: «В магазин приходит немой. Каким жестом он покажет продавцу, что ему нужен молоток?» От слушателей требуется, чтобы они движением руки, кисть которой сжата в кулак, имитировали вбивание гвоздя. После этого задача продолжается: «А теперь в тот же магазин приходит слепой. Как он даст знать продавцу, что ему нужны ножницы?» Слушатели в ответ поднимают руку и, раздвигая и сдвигая два пальца, имитируют движение ножниц.
Барьер, возведенный с самого начала как переход от звуковой речи к речи жестов, закрепляется у слушателей, как правило, сразу же. Между тем ясно, что слепому, способному говорить, вовсе не требуется прибегать к языку жестов.