Аналогичный же барьер возникает, когда внимание испытуемого с вычислительной стороны вопроса переносится на грамматическую, этимологическую. Здесь мы имеем пример, обратный тем, которые были разобраны выше. Задача: «Как надо сказать: дважды два есть пять, суть пять, равно пяти или просто пять?»
Здесь барьер отделяет и устраняет из поля зрения как раз вычислительную сторону вопроса, намеренно фиксируя лишь его грамматическую сторону.
Как правило, барьер работает в этом случае у большинства опрашиваемых. Я задавал эту задачу специалистам-математикам, в том числе и зарубежным, и убеждался, что барьер работает и у них так же, как у обычных людей. Такова другая, еще более простая задача: «Как надо написать словами: пять и семь — адиннадцать или одиннадцать?» Но это только для школьников!
На подобном же барьере-подмене построена задачка для детей младшего возраста: «Шел дождь и два студента. Сколько всего?»
Барьер-подмена фигурирует, например, в «Недоросле» Фонвизина, когда Митрофанушка на вопрос: «Дверь — какая часть речи?» — отвечает: «Котора дверь? Если эта, то прилагательное, а если та, что стоит в сарае, то пока существительное». Здесь грамматика подменяется отношением реальных вещей.
В заключение данного цикла барьеров приведем еще следующий, который нередко ставит в тупик опрашиваемого, поскольку его преодоление (решение задачи) требует быстрого переключения от одного порядка вычислительных операций к совершенно другому. Задача: «Я буду называть вам подряд целые числа, а вы быстро говорите, чему они равны в квадрате. Считаю: один в квадрате?» Ответ: «Один». — «Два в квадрате?» — «Четыре». — «Три в квадрате?» — «Девять». — «Четыре в квадрате?» — «Шестнадцать». — «Пять?» — «Двадцать пять». — «Шесть»? — «Тридцать шесть». — «Угол?» Встречный недоуменный вопрос: «Как это угол?». Мое пояснение: «Да вот так. Чему равен угол в квадрате?» Снова встречный вопрос: «Да как же его можно возвести в квадрат (то есть умножить на самого себя)?» И далеко не сразу испытуемый догадывается, что здесь совершается переход от арифметического действия к геометрическим представлениям и что ответом будет: «90 градусов». Достаточно долгая операция возведения целых чисел в квадрат закрепляет барьер, что выражение «в квадрате» имеет только один смысл, а именно: «умноженное само на себя», что явно бессмысленно в отношении угла.
Барьеры замыкания. Это такие барьеры, которые предполагают, что задача должна решаться в определенных рамках и не выходить за их пределы, в то время как преодоление такого рода барьеров состоит именно в выходе за эти рамки.
Хорошо известна задача на 9 точек, которую я решил еще студентом, а потом в 20-х и 30-х годах широко использовал как модель для выяснения сообразительности людей. В наше время эту задачу исследовал и применил в своих работах психолог Я. Пономарев, а потому я на ней здесь подробнее останавливаться не буду. Она состоит в том, что задано 9 точек предлагается соединить их одной непрерывной ломаной линией из четырех отрезков, иначе говоря, соединить их подряд четырьмя линиями, не отрывая карандаша от бумаги. Это сделать невозможно, если не выходить за их пределы, то есть за пределы квадрата, ограниченного этими точками. Решение достигается путем преодоления навязанного нам барьера замыкания.
Выходя движением карандаша за рамки точечного квадрата, мы можем легко соединить все 9 точек ломаной линией из четырёх отрезков.
Подсказкой-трамплином может служить замена слов «соединить точки» словами «провести через них прямые линии». Слово «соединить» говорит о том, что линии надо проводить только внутри квадрата или по его сторонам, не выходя за его пределы, иначе говоря, соблюдая навязанный наперед «барьер замыкания». Слово же «провести» допускает проведение соединительной линии за пределы квадрата.
Барьер замыкания фигурирует и в другой задаче аналогичного рода: даны четыре одинаковых между собою равносторонних треугольника. Надо соединить их в одну геометрическую фигуру, с тем чтобы у каждой пары треугольников одна сторона была бы общей. Первые попытки решения такой задачи на плоскости оказываются неудачными. Ее решению мешает барьер, предполагающий, что необходимо решать задачу именно на плоскости. Только выходя за два измерения в третье, преодолевая барьер замыкания, задачу можно решить путем построения тетраэдра.
Можно привести еще пример барьера замыкания. Задача: «Как построить дом, чтобы все его окна выходили на юг и не могли бы выходить на север?» Очевидно, что, находясь в любом пункте земной поверхности, на любой широте и долготе, эту задачу решить нельзя. Для этого необходимо выйти за пределы обычных географических представлений и строить (мысленно) дом там, где широта и долгота отсутствуют, то есть равны 0. Это — Северный полюс.