Однако в отличие от предшествующих научных революций обоих типов новейшая революция в естествознании происходила как бы дифференцированным образом: она разрушала основной барьер, стоявший между макро- и микромирами, не сразу, одним ударом, а как бы расчленив его на части, а затем суммируя свои удары по старым воззрениям. Она совершалась поэтапно, переходя с одной ступени познания материи на другую, в глубь материи. Следует отметить, что эта революция охватила все области естествознания, в том числе, например, биологию, где особенно важные революционные перевороты произошли в области генетики (учения о наследственности). Мы ограничимся лишь областью физики, точнее, атомной и субатомной физики, так что этапы новейшей революции в естествознании мы будем прослеживать в связи с тем, как наука XX в. проникала все дальше и дальше в глубь материи.
Начало новейшей революции в естествознании. (I этап)
Крушение понятия неделимого, неизменного атома. В XIX в. господствовало метафизическое представление об атомах как последних частицах материи. Поэтому атомы рассматривались как простые, неделимые частицы, которыми исчерпывалось все наше знание самой материи. Великие открытия физики конца XIX в. - лучей Рентгена, радиоактивности и радия, электрона - свидетельствовали о крушении старых классических представлений об атоме. Рушилась сама вера в исчерпаемость атомов, поскольку они оказывались изменчивыми, сложными и разрушимыми. Само по себе эмпирическое открытие радиоактивности и радия, при всей его важности, еще не делало научной революции до тех пор, пока эти открытия не получили теоретического объяснения. Оно было дано впервые в 1902 г. английскими физиками Э. Резерфордом и Ф. Содди, которые доказали, что радиоактивность есть спонтанный распад атомов, превращение одних элементов в другие. Так, радий превращается в гелий и эманацию радия, названную позднее радоном. С этого момента радий получил название "революционер-радий".
Дж. Дж. Томсон, открывший электрон, попытался создать модель атома. Она у него носила статический характер: положительный электрический заряд был как бы "размазан" по всему атому. Неподвижные же электроны были вкраплены в атом, наподобие того как маленькие зернышки могут быть включены в некоторое студенистое образование. Такая модель просуществовала до 1911 г.
Из начавшейся новейшей революции в естествознании можно было сделать два различных вывода. Первый делали ученые, не понявшие самого смысла этой революции. Они пытались сохранить старую веру в исчерпаемость "последних" частиц материи, но только теперь в качестве таковых сил стали выдвигать уже не атомы, а электроны. Прежние метафизические черты, которыми наделялись раньше атомы, теперь стали приписывать электронам. Однако эта попытка оказалась несостоятельной.
Совершенно иную позицию занял В. И. Ленин. Из начавшейся новейшей революции он сделал правильный вывод о том, что рушилась не вера в исчерпаемость одних только атомов, а вера в исчерпаемость любых, сколько угодно мелких микрочастиц материи. "Электрон так же неисчерпаем, как и атом, природа бесконечна..." Эти ленинские слова выдающийся английский физик С. Пауэлл метко назвал программой всей физики XX в. Они полностью подтвердились в ходе дальнейшей научной революции.
Вступление идеи дискретности в физику. Уже открытие электрона - носителя отрицательного электричества - нанесло первый серьезный удар по классической вере в непрерывность физических функций, в особенности, конечно, в области учения об электричестве. Второй удар по этой концепции нанесла квантовая теория, созданная в 1900 г. М. Планком, согласно которой существует универсальная константа - квант действия, входящий в различные физические величины, в том числе и в выражение энергии, и обусловливающий их прерывистый, дискретный характер. Поэтому такие процессы, как излучение и поглощение света, протекают не непрерывно, а отдельными порциями. Свое открытие Планк сделал, изучая излучение тепла так называемым абсолютно черным телом. Пока излучение тепла и света происходило в огромных количествах, процесс этот казался непрерывным. Его прерывность обнаружилась лишь в условиях максимально возможного уменьшения количества излучаемого тепла. Приведем следующее сравнение: из широко открытого водопроводного крана вода бежит полной струей. Если кран подвернуть, струя станет тоньше, но все же останется непрерывной, цельной. Но если кран завернуть почти до конца, то вода перестанет литься струей, а будет капать, т. е. истечение ее приобретет прерывистый характер. Это, конечно, образное сравнение, но оно позволяет понять, как Планк обнаружил прерывистый характер (квантовый) излучения и поглощения энергии - тепла и света.