Выбрать главу

Давайте начнем так…

Если верить Ньютону, каждый объект во Вселенной притягивает другой объект с силой (f), пропорциональной произведению масс этих объектов (m1 и m2), деленной на квадрат расстояния между их центрами (d). Чтобы получить равенство, умножаем результат на гравитационную постоянную (g).

f = gm1m2/d2 (формула 1).

Это означает, что существует притяжение между Землей и Солнцем, между Землей и Луной, а также между Землей и всеми планетами, спутниками, метеоритами и каждой песчинкой космической пыли во Вселенной.

К счастью, Солнце так огромно по сравнению со всеми остальными объектами Солнечной системы, что при расчете орбиты Земли или любой другой планеты делается допущение (если рассматриваются только Солнце и конкретная планета), что они одни во Вселенной. Влияние остальных небесных тел может быть подсчитано позже.

Так же можно рассчитать орбиту спутника, предположив, что он и его основная планета одни во Вселенной.

Здесь есть кое-что, на мой взгляд, чрезвычайно интересное. Если Солнце многократно массивнее любой планеты, разве оно не должно оказывать влияние и на спутники, даже находясь на значительно большем расстоянии, чем его родная планета? Если так, каким образом можно оценить это влияние?

Представим себе этот процесс в виде перетягивания каната, на одном конце которого находится спутник со своей планетой, а на другом — Солнце. Как поведет себя Солнце в этом соревновании?

Думаю, что астрономы все это давно подсчитали, однако я ни разу не видел результатов этих расчетов в литературе, поэтому решил выполнить их сам.

Вот что можно сделать. Давайте обозначим массу спутника m, массу его планеты (вокруг которой он вращается) mр, массу Солнца — ms. Расстояние от спутника до планеты у нас будет dр, а расстояние от спутника до Солнца — ds. Гравитационная сила, действующая между спутником и планетой, — fp, а между спутником и Солнцем — fs. Вот и все. Обещаю, больше вы не увидите никаких новых обозначений, по крайней мере в этой главе.

Из формулы 1 видно, что сила притяжения между спутником и планетой:

fp = gmmp/dp2 (формула 2),

а между тем же спутником и Солнцем:

fs = gmms)/ds2 (формула 3).

Нам интересно узнать, насколько гравитационная сила, действующая между спутником и планетой, сравнима с аналогичной силой, действующей между спутником и Солнцем. Иными словами, чрезвычайно любопытно вычислить отношение fp/fs, которое можно назвать «коэффициентом перетягивания каната». Чтобы его получить, следует разделить формулу 2 на формулу 3. Результат приведен в формуле 4:

fp/fs = (mp/ms) (ds/dp)2 (формула 4).

При делении формула несколько упростилась. Во-первых, исчезла гравитационная постоянная, и нам не придется иметь дело с малыми числами и неудобными размерностями. С другой стороны, сократилась масса спутника (иными словами, для получения «коэффициента перетянутого каната» не имеет значения размер спутника).

В формуле остались отношение массы планеты к массе Солнца, а также квадрат отношения расстояния от спутника до Солнца к расстоянию от спутника до планеты.

Спутники имеют только шесть планет. Это Нептун, Уран, Сатурн, Юпитер, Марс и Земля (в порядке убывания расстояния от Солнца).

Произведя подсчет отношения масс, получим следующие результаты:

Нептун … 0,000052

Уран … 0,000044

Сатурн … 0,00028

Юпитер … 0,00095

Марс … 0,00000033

Земля … 0,0000030

Как видите, отношение масс явно в пользу Солнца. Даже Юпитер — самая тяжелая из планет — не дотянул до 1/1000 массы Солнца. В действительности суммарная масса всех планет (с учетом спутников, астероидов, комет и метеоритов) составляет не более 1/750 массы Солнца.

Пока у Солнца имеются все шансы выиграть соревнования по перетягиванию каната.

Однако нам следует рассмотреть и отношение расстояний, а здесь все говорит в пользу планеты, потому что любой спутник располагается ближе к своей родной планете, чем к Солнцу. Тем более, что это отношение расстояний следует еще возвести в квадрат. После этого уже можно почти не сомневаться, что Солнце не перетянет канат. Но все-таки проверим.

Начнем с Нептуна. Он имеет два спутника — Тритон и Нереиду. Среднее расстояние каждого из них от Солнца примерно такое же, как среднее расстояние Нептуна от Солнца, — 2 797 000 000 миль. Среднее расстояние Тритона от Нептуна — 220 000 миль, а среднее расстояние Нереиды от Нептуна — 3 460 000 миль.