Знакомство с работами Жаккара и де Прони подтолкнуло Чарльза Беббиджа на создание Аналитической машины. У Жаккара он позаимствовал программное управление, а у де Прони – разделение сложных вычислений на элементарные операции. Но, как говорят, непосредственным импульсом к конструированию новой машины оказался проигрыш партии Механическому шахматному автомату, названному Турком. С этим Турком его создатель Вольфганг фон Кемпелен (Wolfgang Kempelen,1734–1804), а после его смерти новые владельцы, разъезжали по всему миру до тех пор пока лже-автомат не вышел из строя. Секрет Турка раскрылся только через сто лет в 1947 году, когда его останки нашли в одном из американских музеев. Ни каких чудес, оказалась, что внутри куклы сидел скрытый системой зеркал человек, перемещавший фигуры с помощью системы рычагов.
Аналитическая машина в силу ее сложности никогда не была построена, лишь через несколько десятилетий сыну Бэббиджа после его смерти удалось реконструировать отдельный фрагмент. Но тем не менее в среде современников Бэббиджа появились странные предположения о ее разумности. Сам создатель Аналитической машины, конечно же, в них не верил, но и не спешил рассеивать заблуждения по весьма понятной причине – ему нужны были средства на окончание работы, а разговоры о мыслительных возможностях его творения будоражили умы, чем немало способствовали получению денег. Внушение власть имущим веры в возможность создания чудо-машины часто способствует получению инвестиций, этот прием применяли многократно особенно, начиная с 1956 года, некоторыми он используется и сейчас. Однако у Бэббиджа было двое верных последователей. Луиджи Менабреа, итальянский офицер, в последующем политик (Luigi Menabrea, 1809–1896), составивший конспект лекций, прочитанных мэтром в Турине и таким образом сохранивший для потомков труды своего учителя. Леди Августа Лавлейс (Augusta Lovelace, 1815–1852), стала автором комментариев к этому конспекту. Оба глубоко понимали суть проблемы и противодействовали попыткам наделить Аналитическую машину какими-то либо элементами сознания. Менабреа, как инженер, к тому же не связанный обязательствами перед британцами, был более категоричен в своем отрицании всяких праздных размышлений относительно разумности машины, а вот леди Августе, как члену высшего общества, куда входил и сам Бэббидж, было сложнее отстаивать свою позицию, не навредив учителю. Она допускала, например, гипотетическую возможность сочинения машиной музыки, но только в том случае, если ей будут заданы соответствующие правила. Квинтэссенцией же ее отношения к машине служат слова: «Аналитическая машина не претендует на обладание способностью создавать что-то действительно новое. Машина может выполнить лишь то, что мы умеем ей предписать. Она способна сделать формальный анализ, но не может сделать из него выводы и предсказания». Удивительно как точно и прозорливо совсем молодая женщина, не имевшая формального образования, смогла сформулировать истину, о которой не следует забывать и тем, кто пытается насаждать мысли о разумности AI в наше время.
Электроника и первые компьютеры
Аналитическая машина Беббиджа стала венцом применения механики для вычислений, за последующие сто лет ничего сравнимого сделано не было, они отмечены лишь массовым производством простых счетных устройств и табуляторов. Радикальные изменения, ставшие техническими предпосылками к созданию AI, начались в период с 1930 по 1950 год, когда произошел настоящий взрыв достижений в самых разных областях науки и технологий, от микробиологии до ядерной физики, от телевидения до авиационно-космической отрасли. Успехи в электронике способствовавшие созданию материальной базы для будущих компьютеров.
В первую очередь следует назвать изобретение электронных ламп-триодов с тремя электродами. Напряжение подавалось на два – анод и катод, а управление силой тока осуществлялось изменением напряжения на размещенном между ними третьем – сетке. Управляющий сигнал на сетке позволял варьировать поток электронов между анодом и катодом. Конструктивно на одной лампе, скомпонованной из двух триодов (двойном триоде) можно собрать двухпозиционное электронное устройство – триггер (flip-flop), способное хранить 1 бит данных. Из триггеров собирают регистры, хранящие машинное слово и выполняющие различные виды работ с двоичными числами. Регистры были и остаются основой архитектуры с хранимой в памяти программой.
Не будь компьютеров, никакого AI не могло бы быть и в помине. Трудно представить, но самые первые компьютеры к науке не имели прямого отношения, они были в чистом виде плодом инженерной мысли, строились на основе эмпирических представлений, без какого-либо теоретического обоснования. Теория к ним была несколько искусственно подверстана позже, она ассоциируеться с двумя именами – Алана Тьюринга и Джона фон Неймана, однако их роль и место в истории компьютеров не столь очевидны и значимы, как их обычно представляют. Как математик, Тьюринг вошел в историю тем, что смог справиться с проблемой разрешимости (Entscheidungsproblem), поставленной в 1900 году Давидом Гильбертом. Свои изыскания он изложил в статье «О вычислимых числах, применительно к проблеме разрешимости» (On Computable Numbers, with an Application to the Entscheidungsproblem), опубликованной в 1936 году. Для доказательства Тьюринг использовал изобретенный им виртуальный инструмент – гипотетическую машину, более известную как «универсальная машина Тьюринга» (Universal Turing Machine, UTM). Годы спустя ее стали называть «a-machine» (automatic machine), потому что через 12 лет он описал еще одну гипотетическую машину «b-machine». UTM оказалась связанной с компьютингом благодаря одному удачному, если не сказать фантастически удачному обстоятельству. Так случилось, что в июне 1937 года во время стажировки в Принстонском университете Тьюринг получил возможность пообщаться с Джоном фон Нейманом и изложить ему свои взгляды на UTM. Это обстоятельство подтверждает рекомендательное письмо Тьюрингу, подписанное фон Нейманом, где признанный ученый дал высокую оценку молодому аспиранту.