Признавая объективную необходимость упрощения, надо помнить об ограниченности инженерных знаний, иногда в процессе технических разработок возникают задачи, которые не имеют решения в рамках адаптированной инженерной модели, типичный пример проблема флаттера (возникновения вибрации). Авиационные конструкторы сами не смогли с ней справиться, потребовалась помощь со стороны физиков и математиков. Потеря связи инженерии с наукой в любой области грозит формированием того, что называют «монтерскими знаниями»: его носители успешно решают прикладные задачи, но при этом их не интересуют ни теоретические основы предмета, ни тем более его история. К сожалению, в носителей монтерских знаний превращаются многие из тех, кого называют чудовищным словом «айтишник». Трудно представить себе физика или химика, не знающего истории своей науки хотя бы в общих чертах, но, увы, среди тех, кто образует огромное дискурсивное поле, состоящее из практиков AI, знание истории этого предмета минимально, если оно вообще есть.
Книга представляет собой попытку раскрыть прикладным специалистам исторические предпосылки появления современного AI, не претендуя на большее. Она может вызвать справедливую критику со стороны представителей других дискурсивных полей, но, повторюсь, книга адресована не им.
А закончить это введение хотелось мечтой. На протяжении десятков лет в работе над AI принимали участие удивительные люди, яркие личности, их связывали сложные отношения, они испытывали триумфы побед и горечи поражений, судьба была более благосклонна к одним и несправедлива к другим. Чем не сюжет, например, для сериала на много сезонов? Как знать, может быть, кто-то и реализует эту мечту.
Глава 1 AI – От мечты к обыденности
Люди издревле стремились переложить часть своего труда на машины: первые ткацкие станки, обнаруженные археологами, относятся к 10-му тысячелетию до н. э., водяные мельницы появились в античные времена, а ветряные примерно тысячу лет назад. В последние два-три столетия процесс механизации и в последующем автоматизации пошел с постоянным ускорением, научившись использовать энергию пара, а затем и электричества люди смогли расширить сферу механизации от бытовых приборов до промышленных установок самого разного типа и перейти к автоматизации физического труда. В XX веке компьютеры позволили сделать следующий шаг – автоматизировать еще и часть часть умственного труда, которую удается запрограммировать и передать компьютерам. В XXI веке с использованием AI удалось пойти дальше – передать машинами еще ту часть умственного труда, которая не может быть запрограммирована, и превратить компьютер в интеллектуального помощника, еще больше освобождающего человека от рутины, создать умные машины, выводящие на более высокий уровень автоматизацию производственных процессов. Такое утилитарное понимание роли умного AI сложилось совсем недавно, буквально в последние годы, а прежде на протяжении нескольких десятилетий доминировало более возвышенное, скажем так, романтическое отношение к AI, люди сохраняли убеждение в возможности наделить компьютеры сравнимыми с человеческими умственными способностям, например к доказательству теорем, игре в шахматы и т. п.
Три типа представлений об AI
Сосуществуют сотни и сотни противоречащих друг другу представлений о том, что такое AI, обнаруживаемых в различных произведениях, в диапазоне от философских трактов до технических статей. На одном фланге находятся футурологи с их фантазиями о технологической сингулярности, то есть о том гипотетическом моменте, с наступлением которого технологическое развитие становится неуправляемым и необратимым. По их мнению, такой ход событий неизбежен, и тогда развитие AI приведет к созданию надчеловеческого суперинтеллекта. Успокаивает то, что за этими рассуждениями не стоит ничего кроме вольной экстраполяции существующих тенденций, наблюдаемых в техническом прогрессе. На другом фланге ученые и инженеры, работа которых связана с прикладными методами моделирования работы мозга, в их основе лежат искусственные нейронные сети (ANN, Artificial Neural Network) и их машинное обучение (ML, Machine Learning). Такие работы лишены внешней привлекательности, они мало доступны для понимания без достаточной подготовки, а их перспективы ограничены созданием умных интеллектуальных ассистентов и разного рода умных машин, в том числе роботов. Уже сегодня мы можем увидеть примеры их применения в медицине, в офисной работе, в промышленности, на транспорте и даже в быту.