Зрительное восприятие – еще одна задача, которую так и не смог решить существующий искусственный интеллект, но она под силу по-настоящему разумным системам. На сегодняшний день не существует машины, которая смогла бы наблюдать естественную сцену, как, например, мир перед вашими глазами или картинка видеокамеры, и описать то, что она видит. Есть несколько примеров успешного применения систем, распознающих изображения, но весьма ограниченные. Речь идет, например, о регистрации расположения чипа на интегральной схеме или сопоставлении черт лица с базой данных. На данной стадии компьютер не может распознавать различные объекты или анализировать наблюдаемую картину в более широком плане. У вас не возникает проблем, когда вы заходите в комнату и ищете место, где можно было бы сесть, но не просите компьютер сделать то же самое. Представьте себе, что вы смотрите на экран камеры безопасности. Сможете ли вы увидеть различия между человеком, держащим в руке подарок и стучащим в дверь, и человеком, у которого в руке перо ворона? Конечно сможете, однако эти различия превосходят возможности современного программного обеспечения. Поэтому мы нанимаем людей, которые следят за экранами камер безопасности круглые сутки и наблюдают, не происходит ли что-нибудь подозрительное. Человеку-наблюдателю непросто сохранять бдительность много часов подряд, а вот машина могла бы сделать это без труда.
Давайте также рассмотрим транспортные средства. Устройство автомобилей постоянно усложняется. Существуют глобальные системы позиционирования, способные просчитать кратчайший маршрут от точки А до точки Б, существуют сенсоры, автоматически включающие фары, когда на улице становится темно, сенсоры приближения, которые помогают определить безопасность обгона и так далее. Существуют даже автомобили, способные ехать без водителя на специальных трассах в идеальных условиях. Они, правда, не поступают в открытую продажу. Чтобы вести машину безопасно и эффективно на любых дорогах при любых условиях, вовсе не достаточно несколько датчиков или схем обратного контроля. Чтобы быть хорошим водителем, вам нужно понимать устройство автомобиля, характер дорожного движения, предугадывать маневры других водителей и учитывать массу других обстоятельств. Водителю следует внимательно отслеживать сигналы, предостерегающие об опасности. Например, включенный сигнал поворота у впереди идущего автомобиля предупреждает о том, что водитель собирается перестроиться в другой ряд. Если сигнал включен несколько минут подряд, то, скорее всего, водитель о нем просто забыл и перестраиваться не собирается. Когда водитель видит мяч, катящийся на проезжую часть со стороны тротуара, он автоматически предполагает, что, возможно, за мячом сейчас побежит ребенок, и интуитивно резко сбрасывает скорость.
Допустим, мы хотим создать по-настоящему «умный» автомобиль. Сначала нам нужно определить набор сенсоров, которые позволят нашему автомобилю воспринимать текущую дорожную ситуацию. Мы, вероятно, начнем с камеры видения, даже нескольких камер в передней и задней частях автомобиля, затем придумаем микрофоны для воссоздания звукового восприятия, затем, возможно, добавим радар или ультразвуковые сенсоры, точно определяющие диапазон и скорость других объектов на трассе как при хорошем освещении, так и в темное время суток. Не надо создавать рамки, ограничиваясь ощущениями, свойственными исключительно человеку. Алгоритм коры головного мозга очень гибок, и если мы спроектируем нашу рукотворную иерархическую систему памяти должным образом, она будет работать независимо от типов установленных сенсоров. Теоретически наш воображаемый «мыслящий» автомобиль может воспринимать ежесекундно меняющуюся дорожную ситуацию лучше, чем водитель-человек, потому что может выбирать разные наборы сенсоров в зависимости от поставленной задачи. Сенсоры будут связаны с достаточно большой иерархической системой памяти. Разработчики автомобилей будут тренировать его память путем помещения в условия реального мира, чтобы она училась создавать модель мира точно так же, как это делают люди, только в условиях более ограниченной области. (Ведь автомобилю нужны знания об автодорогах, а не об элеваторах и аэропланах.) Память автомобиля «выучит» иерархическую структуру транспорта и дорог так, что сможет понимать, что происходит в ее мире движущихся автомобилей, дорожных знаков, препятствий и перекрестков в текущий момент времени, и прогнозировать ход развития дальнейших событий. Инженеры-разработчики такого автомобиля могут настроить систему его памяти так, чтобы она полностью управляла автомобилем или только отслеживала, что происходит, когда за рулем сидите вы. Она может давать советы или принимать на себя управление в экстремальных ситуациях. Как только память будет полностью натренирована и сможет понимать и решать любые проблемы, с которыми сталкивается, инженеры получат возможность выбрать два варианта последующего применения. Они могут поместить стандартную память во все автомобили, сходящие с конвейера, или же комплектовать их памятью, которая будет продолжать самообучение после продажи автомобиля. Как и в случае с компьютерами, память автомобиля должна поддаваться перепрограммированию более актуальной версией.