Многие виды животных обладают поразительными ощущениями, совершенно несвойственными человеку. В качестве примеров можно привести эхолокатор у дельфинов и летающих мышей, способность пчел видеть поляризованное и ультрафиолетовое излучения, восприятие электрического поля некоторыми видами рыб.
Разумные машины смогли бы воспринимать мир посредством всех видов ощущений, существующих в природе, а также изобретенных человеком. Данные об окружающей среде, получаемые с помощью гидролокатора, радара и приборов ультрафиолетового видения, являются очевидными примерами несвойственных человеку ощущений, которые мы, возможно, хотели бы воссоздать в разумной машине. И это всего лишь начало.
Намного более интересными являются способы восприятия, которые нам неизвестны и чужды. Как мы уже выяснили, алгоритм коры головного мозга в первую очередь сосредоточен на поиске сигналов внешнего мира. У него нет никаких приоритетов относительно физических истоков этих сигналов. Если входные сигналы не носят произвольный характер и обладают определенным богатством, а также статистической структурой, разумная машина будет формировать систему воспоминаний о них и прогнозы на их основе. Не существует причин, по которым входные сигналы должны иметь аналогию с физическими ощущениями или вообще иметь что-либо общее с реальным миром. Я полагаю, что именно в сфере экзотических ощущений скрыты перспективы революционного применения разумных машин.
Например, вообразите сенсорную систему, покрывающую планету. Представьте себе сенсоры, расположенные на расстоянии каждых пятидесяти миль по всем континентам. Эти сенсоры имитировали бы клетки сетчатки глаза. Каждое мгновение два смежных сенсора погоды имели бы высокую корреляцию активности, подобно высокой корреляции двух смежных клеток сетчатки. Существуют крупные погодные явления – например, штормы и фронтальные циклоны, – которые передвигаются в пространстве и меняются со временем точно так же, как и все объекты, которые меняются и перемещаются. Привязав этот сенсорный ряд к системе памяти, работающей по принципу коры головного мозга, мы бы обучили указанную систему прогнозировать погоду, подобно тому, как люди учатся распознавать объекты окружающей среды и прогнозировать траекторию их передвижения. Такая система предсказывала бы погодные условия на ближайшее время, а также формировала бы долгосрочные метеопрогнозы. Разместив сенсоры рядом друг с другом в какой-то области, мы бы создали своеобразный эквивалент ямки глаза, которая позволяла бы нашей системе понимать и прогнозировать микроклимат. Наш «погодный мозг» размышлял и понимал бы глобальные погодные системы точно так же, как мы с вами понимаем объекты и людей. Метеорологи пытаются создать нечто подобное в наши дни. На основе данных, собранных в разных частях Земли, используя сверхмощные компьютеры, ученые симулируют текущие погодные условия и прогнозируют будущие. Однако данный подход фундаментально отличается от принципов работы разумных машин. Он больше сродни компьютеру, играющему в шахматы, а разумная система, сконструированная по принципам работы неокортекса, скорее, напоминает человека, играющего в шахматы. Она делает это вдумчиво и с пониманием. Разумная машина-«синоптик» учла бы те сигналы, которых человек распознать не может. Она смогла бы распознать множество новых погодных феноменов (скажем, такое погодное явление, как ураганы Эль-Ниньйо было открыто лишь в шестидесятых годах XX века). Она бы прогнозировала появление торнадо и муссонов намного точнее, чем человек. Человеку не под силу сохранять в памяти и анализировать множество метеоданных. Искусственный интеллект компьютера-«синоптика», напротив, был бы способен ощущать и воспринимать погодные условия непосредственно.
Другие распространенные большие сенсорные системы могли бы дать нам возможность создать разумные машины, понимающие и прогнозирующие миграцию животных, демографические изменения и распространение инфекционных болезней. Представьте себе сенсоры, размещенные в сети электрического тока некой страны. Разумная машина, присоединенная к этим сенсорам, наблюдала бы за спадами и подъемами потребления электроэнергии точно так же, как мы с вами наблюдаем большее или меньшее количество транспортных средств на трассе или потоки передвижения пассажиров в аэропорту. Посредством повторных наблюдений люди учатся прогнозировать подобные сигналы. (Можете спросить у тех, кто каждый день ездит на работу на автомобиле или охранника в аэропорту.) Точно так же наша разумная система сможет прогнозировать повышенное напряжение или опасные ситуации, которые могут вызвать сбои в подаче электричества, лучше, чем человек. Мы могли бы сочетать погодные и демографические сенсоры, чтобы спрогнозировать вспышки политического недовольства, голода или болезней. Подобно гениальному дипломату, разумные машины могли бы сглаживать конфликты и уменьшать человеческие страдания. Вы можете подумать: для того чтобы предвидеть сигналы, включающие человеческое поведение, разумным машинам непременно нужны эмоции. Я так не считаю. Мы не рождены с заданной культурой, заданными ценностями и заданной религией, мы приобрели их в процессе жизненного опыта, иными словами – обучились им. Точно так же, как я могу изучить мотивацию людей с ценностями, отличающимися от моих, разумные машины могут понять человеческие мотивы и эмоции, сами таковыми не обладая.