Я склонился к тому, чтоб с наименьшими потерями достигнуть своей цели. Работа над теорией мозга в Intel могла бы быть наилучшим выходом. Когда эта возможность была отвергнута, я стал искать другую. Я решил обратить внимание на Массачусетский Технологический Институт (MIT), который был известен своими исследованиями в области искусственного интеллекта и был удобно расположен по дороге. Это казалось великолепным совпадением. У меня большой опыт в вычислительной технике — «подходит». У меня желание построить интеллектуальную машину, «подходит». Я хочу сначала изучить мозг, чтоб понять, как он работает… «хмм… с этим проблемы». Эта последняя цель, желание понять работу мозга, было ненужным в глазах ученых из лаборатории искусственного интеллекта MIT.
Это было все равно что ломиться сквозь стену. MIT был родиной искусственного интеллекта. Когда я подал заявление в MIT, он был домом для множества интересных людей, порабощенных идеей запрограммировать компьютер так, чтоб он демонстрировал интеллектуальное поведение. Для этих ученых зрение, язык, роботы и математика были всего лишь вычислительными проблемами. Компьютеры могли бы делать все, что мог бы мозг, и даже больше, зачем же ограничивать мышление биологическими недостатками природных компьютеров? Изучение мозга ограничило бы наше мышление. Они были уверены, что лучше изучать предельные ограничения вычислений, как наиболее выраженные в цифровых вычислительных машинах. Их «Святым Граалем» было желание написать компьютерные программы, которые сначала сравнялись бы, а затем и обогнали человеческие способности. Они выбрали подход «цель оправдывает средства»; их не интересовало, как в работает реальный мозг. Они гордились игнорированием нейробиологии.
Меня поразило, как совершенно неверным способом берутся за проблему. Интуитивно я чувствовал, что ИИ-подход не только будет безуспешным в создании программ, могущих то же, что и человек — он ни за что не объяснит нам, что же такое интеллект. Компьютер и мозг построены на совершенно различных принципах. Первый программируется, второй — самообучается. Первый должен точно и четко работать с любыми данными, второй обладает естественной гибкостью и толерантностью к сбоям. У первого есть центральный процессор, у второго — нет централизованного управления. Список различий можно продолжать и продолжать. Основная причина, по которой я думал, что компьютер не может быть интеллектуальным — это то, что я понимал, как работает компьютер, вплоть до уровня физических процессов в транзисторе, и эти знания давали мне сильное интуитивное ощущение, что компьютер и мозг фундаментально различны. Я не мог этого доказать, но я знал это настолько точно, насколько человек может что-либо интуитивно знать. В конечном счете, я был убежден, что ИИ может привести к полезным изделиям, но он не приведет к построению действительно интеллектуальных машин.
В отличие от этого, я хотел понять реальный интеллект и восприятие, изучить физиологию и анатомию мозга, принять вызов Френсиса Крика и представить миру четко определенную систему взглядов на то, как работает мозг. Я обратил свой взор в особенности на неокортекс — наиболее молодую часть мозга млекопитающих и место локализации интеллекта. После понимания того, как работает неокортекс, мы смогли бы продвинуться в построении интеллектуальных машин, но не раньше.
К несчастью, преподаватели и студенты, которых я встретил в MIT, не разделяли моих интересов. Они не верили, что необходимо изучать реальный мозг, чтоб понять интеллект и построить интеллектуальные машины. Так они мне и сказали. В 1981 году университет отклонил мое заявление.
Большинство людей сегодня верит, что ИИ-подход жив и здоров, и всего лишь ожидает достаточных компьютерных мощностей, чтоб оправдать свои многочисленные обещания. Когда компьютеры будут обладать достаточным объемом памяти и производительностью, продолжается мысль, программисты ИИ смогут сделать интеллектуальные машины. Я не согласен. ИИ-подход страдает от такого фундаментального недостатка, что он не может адекватно указать, что такое интеллект или что обозначает понимание чего-либо. Краткий взгляд на историю ИИ и на догма, на которых он построен, объяснят, почему это направление сбилось с курса.
ИИ-подход родился с появлением цифровых вычислительных машин. Ключевой фигурой в ИИ-движении был английский математик Алан Тьюринг, один из соавторов идеи компьютера общего назначения. Его великолепной работой стала формальная демонстрация концепции универсальных вычислений: то есть, все компьютеры фундаментально эквивалентны, несмотря на то, как они построены. Как часть своего доказательства, он придумал воображаемую машину из трех основных частей: процессорного блока, бумажной ленты и устройства, которое считывало и записывало метки на ленту, двигая ее взад и вперед. Лента предназначалась для хранения информации, наподобие компьютерных 1 и 0 (это было до изобретения чипов памяти и дисковых накопителей, так что Тьюринг вообразил бумажную ленту для хранения). Блок, который теперь мы называем центральным процессором (CPU), следовал фиксированному набору правил для чтения и изменения информации на ленте. Тьюринг математически доказал, что если вы выберете верный набор правил для процессорного блока и дадите ему бесконечно длинную ленту, он сможет выполнить любые определяемые множества операций во вселенной. Такая одна из многих эквивалентных машин называется Универсальной Машиной Тьюринга. Является ли задачей извлечение квадратного корня, вычисление баллистической траектории, компьютерная игра, рисование изображений или согласование банковской транзакции — в основе нее лежат единицы и нули, и любая Машина Тьюринга может быть запрограммирована, чтоб выполнять ее. Преобразование информации это преобразование информации. Все цифровые компьютеры эквивалентны.