* * *
ИЗВЕСТНЕЙШИЙ АНАМОРФОЗ ВСЕХ ВРЕМЕН
Известнейший пример анаморфоза в живописи — это, несомненно, «пятно», изображенное в нижней части картины «Послы» Ганса Гольбейна Младшего.
Ганс Гольбейн Младший. «Послы» (1533). Лондонская национальная галерея.
Эта картина изобилует символами, связанными с математикой. Персонажами картины являются Жан де Дентвиль (слева), в то время посол Франции в Англии, который выступил заказчиком картины, и Жорж де Сельв, епископ Лавура и друг Дентвиля, разделявший его увлечение математикой. Сельв также был послом в Священной Римской империи, Венеции и Ватикане, поэтому картина известна под названием «Послы». В центральной части картины изображено множество предметов, указывающих на увлечения персонажей. Эти предметы символизируют арифметику, геометрию, музыку и астрономию, составлявшие так называемый квадривиум, и грамматику, диалектику и риторику, из которых состоял так называемый тривиум. Дисциплины, входившие в тривиум и квадривиум, именовались «семь свободных искусств». Однако наибольшее внимание зрителя привлекает пятно на полу. Оно словно висит в воздухе и выбивается из общей картины. Это пятно является примером анаморфоза: достаточно наклониться и посмотреть на картину искоса, и это пятно примет форму человеческого черепа, который изображен в столь странной анаморфической перспективе.
При взгляде под правильным углом «пятно» превращается в человеческий череп.
* * *
Обратим наш математический взгляд на картину «Пабло де Вальядолид», созданную Диего Веласкесом в 1633 году, которая также хранится в музее Прадо. Пабло де Вальядолид (1587–1648) был придворным актером, и на картине Веласкеса он изображен в одной из своих ролей.
Диего Веласкес. «Пабло де Вальядолид» (1633). Музей Прадо, Мадрид.
Великий французский художник Эдуард Мане, посетив Испанию в 1865 году, был очарован совершенством картины и сказал: «Возможно, самым удивительным произведением живописи из когда-либо созданных является «Портрет знаменитого актера времен Филиппа IV» (Пабло де Вальядолид). Фон исчезает. Человека, одетого в черное и полного жизни, окружает воздух».
Любой, кто посмотрит на эту картину математическим взглядом, сначала будет удивлен и озадачен подобно Мане. Где находится Пабло де Вальядолид? В каком пространстве?
Представление о пространстве
Представление о пространстве, которое является одним из важнейших элементов западной культуры, возникло в Древней Греции. Выделить путем наблюдения отдельные предметы и, абстрагировавшись от них, сформулировать «идею» в том смысле, который придавал этому слову Платон, непросто, но этот процесс доступен для понимания. Так, когда ребенок учится говорить, он постепенно узнает всё новые и новые слова. Он получает представление о том, что такое, например, стол, замечая столы разных форм и размеров. Увидев какой-то конкретный стол, например традиционный с четырьмя ножками, вскоре ребенок понимает, что число ножек не имеет значения, ведь существуют столы с одной, тремя, четырьмя и более ножками и вовсе без них, например прикрепленные к стене. Он абстрагируется от формы поверхности стола, которая необязательно представляет собой прямоугольник, — это может быть круг, квадрат или треугольник. Он также понимает, что поверхность стола необязательно должна быть горизонтальной: например, школьная парта — это тоже стол, но его поверхность наклонена, чтобы было удобнее писать.
Говоря математическим языком, дать определение означает выделить из множества всех объектов некое подмножество по некоторому критерию. Используя этот критерий, при взгляде на любой предмет мы сможем определить, принадлежит он этому подмножеству или нет. Поэтому дать определения предметам непросто, и именно поэтому эта задача представляет такой интерес. Для этого достаточно рассмотреть простой вопрос: «Что такое стол?». Первая попытка, скорее всего, окажется неудачной, так у нас не получится дать определение сразу всем возможным столам. Если мы продолжим попытки, то увидим, что нам потребуется определить, какие свойства являются определяющими для стола, а какие нет; какими свойствами обладают все столы, а какими — только некоторые. В попытках дать ответ на этот вопрос мы начинаем рассуждать в терминах математической логики и формулируем абстракцию. И, как мы уже сказали, само понятие определения по своей сути является математическим.