Однако мне предстоит в другом месте поговорить о твоих заслугах, и о доблести нашего Донато, и всех тех, кто мне дорог своим нравом. Ты же упорствуй, продолжая изобретать изо дня в день те вещи, благодаря которым твое удивительное дарование заслужит тебе вечную славу и имя, а если когда-либо тебя посетит досуг, мне любо будет, что ты снова просмотришь это мое сочиненьице о живописи, которое я написал на тосканском языке, посвятив его тебе. Ты увидишь три книги, и в первой, чисто математической, из глубинных корней природы возникает это прелестное и благороднейшее искусство. Вторая книга вкладывает это искусство в руки художника, различая его области и все доказывая. Третья учит художника, каким он должен быть и каким путем он может достигнуть совершенного искусства и познания всей живописи.
* * *
В основе математического представления о перспективе лежит воображаемая пирамида. Ее вершина находится там же, где располагается глаз художника, который считается единственным и неподвижным. Основанием пирамиды служит видимый контур изображаемого предмета. Изображением в перспективе будет пересечение этой пирамиды с плоскостью изображения. Допустим, что мы хотим изобразить на картинной плоскости π прямоугольник ABCD, расположенный на полу, так, как его видит наблюдатель, стоящий в точке Р. При этом глаз наблюдателя расположен на высоте р и на расстоянии d от картины, то есть в точке О. Для этого нам нужно построить пирамиду OABCD, которая пересечет картинную плоскость π в точках ABCD'. Трапеция ABC'D' будет перспективным изображением прямоугольника ABCD.
Основные понятия перспективы.
(источник: FMC)
Перспективным изображением является проекция с центром в точке О на часть бесконечной плоскости π, ограниченной краями картины. Картинная плоскость π в нашем случае перпендикулярна плоскости основания, или горизонтальной плоскости проекций (хотя это необязательно). Линия, получаемая пересечением этих плоскостей, называется основанием картины. Глаз наблюдателя, или точка зрения О, находится на высоте р над плоскостью основания и на расстоянии d от картинной плоскости π. Из точки О на картинную плоскость опускается перпендикуляр, концом которого будет точка О' — проекция точки О, называемая центром перспективы. Линия, параллельная основанию картины и проходящая через точку О', находящаяся на картинной плоскости, называется линией горизонта.
Изображением любой произвольной точки D на картинной плоскости будет точка D' — точка пересечения плоскости π и линии, проведенной из точки зрения О в точку D.
Метод Леона Баттисты Альберти не слишком отличался от метода Брунеллески. Альберти изложил (довольно туманно) свой метод в трактате «О живописи»: «Сначала там, где я должен сделать рисунок, я черчу четырехугольник с прямыми углами такого размера, какого мне захочется, и принимаю его за открытое окно, откуда я разглядываю то, что на нем будет написано, и здесь же я определяю рост человека, нужный мне для моей картины, и делю рост этого человека на три части, каждую из которых я для себя принимаю пропорциональной той мере, которая называется локтем».