Альберти — автор нескольких важных трактатов. Он считал, что архитектор выполняет скорее математическую функцию: он создает, придает пропорции. Работу прораба выполняют его ученики, которые решают задачи на месте, архитектор же — тот, кто изобретает. Помимо трактата «О живописи», созданного во Флоренции в 1436 году, в 1452 году в Риме он написал «Десять книг о зодчестве» — трактат об архитектуре, сформировавший основы зодчества эпохи Возрождения. Чтобы объяснить, почему мы считаем что-то красивым, Альберти вводит в этой книге термин concinnitas, который мы переведем как «точная пропорция», то есть отсутствие излишков и недостатков.
Леон Баттиста Альберти. Портрет кисти Мазаччо. Капелла Бранкаччи, Флоренция.
(источник: FMC)
* * *
Пьеро делла Франческа использовал метод Альберти в своей книге «О перспективе в живописи», упростив его. Вместо вспомогательного рисунка, как советует Альберти, он объединяет построение продольных и поперечных линий на одном рисунке, как показано ниже:
Схема перспективы по Пьеро делла Франческа.
(источник: FMC)
Этот метод, несомненно, упростил работу художника, однако по сути ничем не отличался от метода Альберти, теоретические основы которого, в свою очередь, сформулировал Брунеллески. Пьеро делла Франческа изображает в перспективе квадрат ABCD, сторона АВ которого совпадает с нижней границей картины. Он обозначает точку зрения О', в которой сходятся стороны квадрата, перпендикулярные картинной плоскости. Далее он определяет на картинной плоскости поперечную прямую C'D', параллельную АВ. Вид спереди и вид сбоку накладываются. Так, линия АН является не только стороной картины, но также изображением самой картины в профиль. Точка О обозначает глаз наблюдателя, который находится на расстоянии d от картинной плоскости АН. Он проводит линию из точки О в точку В, и пересечение этой линии с прямой АН определяет положение поперечной линии C'D' относительно АВ.
Кроме того, он указывает способы представления различных плоских фигур в перспективе. Для этого он вписывает эти фигуры в квадрат и использует так называемый метод точек схода. Попробуем вкратце объяснить этот метод.
Диагонали квадратов, на которые разделен пол, сходятся в так называемой точке схода — точке Q.
(источник: FMC)
Все горизонтальные линии, параллельные между собой, вне зависимости от их положения в пространстве сходятся в перспективе в одной точке на линии горизонта. Если эти линии образуют с картинной плоскостью угол в 45°, как, например, диагонали квадратов, на которые разделен пол, изображенных на предыдущем рисунке, то точка схода этих линий будет находиться на определенном расстоянии от центра перспективы О'. Это расстояние будет равно расстоянию d от наблюдателя до картинной плоскости. Эта точка Q называется точкой схода. Очевидно, что на линии горизонта будут расположены две точки схода: одна справа от центра перспективы, другая слева.
Этот метод Пьеро делла Франческа описал в своей книге «О перспективе в живописи» так, как показано ниже:
Метод точек схода, описанный Пьеро делла Франческа.
(источник: FMC)
Допустим, нужно представить в перспективе квадрат со стороной АВ, зная, на какой высоте от АВ находится точка зрения О', и расстояние d от нее до картинной плоскости. Для этого нужно провести через точку О', прямую, параллельную АВ, и продолжить ее до точки О, расположенной на расстоянии d от точки О'. Из точки О проведем линию в точку В, которая пересечет отрезок АО' в точке D'. И наконец, проведем через D' прямую, параллельную АВ, которая пересечет ВО' в точке С. ABC'D' будет перспективным изображением ABCD.