Метод Канниццаро позволял находить атомные массы только тех элементов, которые входят в состав газообразных или легко переходящих в газообразное состояние соединений. Большинство же металлов не образует таких соединений. Поэтому при определении атомных масс металлов в свое время был использован другой метод, основанный на зависимости между атомной массой элемента и удельной теплоемкостью соответствующего простого вещества в твердом состоянии.
В 1819 г. французские ученые П. Л. Дюлонг и А. Пти, определяя теплоемкость различных металлов, нашли, что произведение удельной теплоемкости простого вещества (в твердом состоянии) на молярную массу атомов соответствующего элемента для большинства элементов приблизительно одинаково. Среднее значение этой величины равно 26 Дж / (моль · К) . Поскольку это произведение представляет собой количество теплоты, необходимое для нагревания 1 моля атомов элемента на 1 градус, то оно называется атомной теплоемкостью. Найденная закономерность получила название правила Дюлонга и Пти:
Атомная теплоемкость большинства простых веществ в твердом состоянии лежит в пределах 22 — 29 Дж / (моль · К) [в среднем около 26 Дж / (моль · К) ]
Из правила Дюлонга и Пти следует, что разделив 26 на удельную теплоемкость простого вещества, легко определяемую из опыта, можно найти приближенное значение молярной массы атомов соответствующего элемента, а значит, и приближенное значение атомной массы элемента.
- 33 -
Рассмотренные нами методы определения атомных масс не дают вполне точных результатов, так как, с одной стороны, точность определения молекулярной массы по плотности пара редко превышает 1%, а с другой, - правило Дюлонга и Пти позволяет найти лишь приближенное значение атомной массы. Однако, исходя из получаемых этими методами приближенных величин, легко находить точные значения атомных масс. Для этого надо сравнить найденное приближенное значение молярной массы атомов элемента с его эквивалентной массой. Такое сравнение оказывается полезным, поскольку между молярной массой атомов элемента и его эквивалентной массой существует соотношение, в которое входит также валентность элемента. Рассмотрим последнее понятие несколько подробнее.
Валентность. Понятие о валентности было введено в химию в середине XIX века. Связь между валентностью элемента и его положением в периодической системе была установлена Менделеевым. Он же ввел понятие о переменной валентности. С развитием теории строения атомов и молекул понятие валентности получило физическое обоснование.
Валентность — сложное понятие. Поэтому существует несколько определений валентности, выражающих различные стороны этого понятия. Наиболее общим можно считать следующее определение: валентность элемента — это способность его атомов соединяться с другими атомами в определенных соотношениях.
Первоначально за единицу валентности была принята валентность атома водорода. Валентность другого элемента можно при этом выразить числом атомов водорода, которое присоединяет к себе или замещает один атом этого другого элемента. Определенная таким образом валентность называется валентностью в водородных соединениях или валентностью по водороду: так, в соединениях HCl, H2O, NH3, CH4 валентность по водороду хлора равна единице, кислорода — двум, азота — трем, углерода — четырем.
Валентность кислорода, как правило, равна двум. Поэтому, зная состав или формулу кислородного соединения того или иного элемента, можно определить его валентность как удвоенное число атомов кислорода, которое может присоединить один атом данного элемента. Определенная таким образом валентность называется валентностью элемента в кислородных соединениях или валентностью по кислороду: так, в соединениях N2O, CO, SiO2, SO3 валентность по кислороду азота равна единице, углерода — двум, кремния — четырем, серы — шести.
У большинства элементов значения валентности в водородных и в кислородных соединениях различны: например, валентность серы по водороду равна двум (H2S), а по кислороду шести (SO3). Кроме того, большинство элементов проявляют в разных своих соединениях различную валентность.
- 34 -
Например, углерод образует с кислородом два оксида: монооксид углерода CO и диоксид углерода CO2. В монооксиде углерода валентность углерода равна двум, в диоксиде — четырем. Из рассмотренных пример следует, что охарактеризовать валентность элемента каким-нибудь одним числом, как правило, нельзя.