Мы знаем, однако, что представление об электроне как о материальной точке не соответствует его истинной физической природе. Поэтому рис. 5 правильнее рассматривать как схематическое изображение электрона, «размазанного» по всему объему атома в виде так называемого электронного облака: чем плотнее расположены точки в том или ином месте, тем больше здесь плотность электронного облака. Иначе говоря, плотность электронного облака пропорциональна квадрату волновой функции.
Представление о состоянии электрона как о некотором облаке электрического заряда оказывается очень удобным, хорошо передает основные особенности поведения электрона в атомах и молекулах и будет часто использоваться в последующем изложении. При этом, однако, следует иметь в виду, что электронное облако не имеет определенных, резко очерченных границ: даже на большой расстоянии от ядра существует некоторая, хотя и очень малая, вероятность обнаружения электрона. Поэтому под электронным облаком условно будем понимать область пространства вблизи ядра атома, в которой сосредоточена преобладающая часть (например, 90%) заряда и массы электрона. Более точное определение этой области пространства дано на стр. 75.
27. Энергетическое состояние электрона в атоме.
Для электрона, находящегося под действием сил притяжения к ядру, уравнение Шредингера имеет решения не при любых, а только при определенных значениях энергии. Таким образом, квантованность энергетических состояний электрона в атоме (т.е. первый постулат Бора) оказывается следствием присущих электрону волновых свойств и не требует введения особых постулатов.
Для лучшего понимания последнего утверждения рассмотрим упрощенную модель атома, «одномерный атом», в котором электрон может совершать лишь колебательные движения между крайними точками.
- 71 -
Будем считать также, что границы атома непроницаемы для электрона, так что он может находиться только внутри атома. Мы уже знаем, что состояние электрона в атоме характеризуется некоторой волной («волна де Бройля»). Но было бы неправильно представлять себе распространение этой волны как нечто подобное движению волны, образовавшейся на поверхности воды от брошенного камня: водяная волна неограниченно удаляется от места своего образования и постепенно расплывается, она не обладает устойчивостью во времени, тогда как электрон в атоме устойчив. Поэтому более правильной будет аналогия между состоянием электрона в атоме и состоянием звучащей струны. На которой образуются так называемые стоячие волны.
На рис. 6 схематически изображены стоячие волны, возникающие на колеблющейся струне, крайние точки которой закреплены. В точках, обозначенных буквой n, возникают пучности — здесь амплитуда колебания максимальна, в точках y струна не колеблется — это узлы, в которых амплитуда колебания имеет промежуточные значения. Поскольку конечные точки струны закреплены, здесь обязательно возникают узлы. В отличие от обычной «бегущей» волны, стоячая волна не перемещается в пространстве и не переносит энергии, которая лишь передается от одних точек струны к другим. Нетрудно видеть (рис. 6), что на струне с закрепленными концами длина стоячей волны может быть не любой, а только такой, чтобы на всей струне укладывалось целое число полуволн: одна (рис. 6, а), две (рис. 6, б), три (рис. 6, в) и т.д.
В рассматриваемой одномерной модели атома волна де Бройля тоже должна быть стоячей: это следует из того, что выйти за границы атома электрон не может и, следовательно, на границах атома волновая функция ψ (т.е. амплитуда волны) должна обращаться в нуль. Поэтому рис. 6 может рассматриваться как модель одномерного атома со стоячими волнами де Бройля, которые могут в этом атоме образоваться.
Если длина одномерного атома равна l, то для случаев а, б, и в на рис. 6 длина волны де Бройля будет выражаться следующим образом: