Для энергетических уровней электрона в атоме (т.е. для электронных слоев, или оболочек), соответствующих различным значениям n, приняты следующие буквенные обозначения:
29. Орбитальное квантовое число. Формы электронных облаков.
Не только энергия электрона в атоме (и связанный с ней размер электронного облака) может принимать лишь определенные значения. Произвольной не может быть и форма электронного облака. Она определяется орбитальным квантовым числом l (его называют также побочным, или азимутальным), которое может принимать целочисленные значения от 0 до ( n — 1), где n — главное квантовое число. Различным значениям n отвечает разное число возможных значений l. Так, при n=1 возможно только одно значение орбитального квантового числа — нуль (l=0), при n=2 может быть равным 0 или 1, при n=3 возможны значения l, равные 0, 1 и 2, вообще, данному значению главного квантового числа n соответствуют n различных возможных значений орбитального квантового числа.
Вывод о том, что формы атомных электронных облаков не могут быть произвольными, вытекает из физического смысла квантового числа l. Именно, оно определяет значение орбитального момента количества движения электрона; эта величина, как и энергия, является квантованной физической характеристикой состояния электрона в атоме.
Напомним, что орбитальным моментом количества движения частицы движущейся вокруг центра вращения по некоторой орбите, называется произведение , где m — масса частицы, - ее скорость, - радиус-вектор, соединяющий центр вращения с частицей (рис. 7). Важно отметить, что - векторная величина; направление этого вектора перпендикулярно плоскости, в которой расположены векторы и .
Определенной форме электронного облака соответствует вполне определенное значение орбитального момента количества движения электрона . Но поскольку может принимать только дискретные значения, задаваемые орбитальным квантовым числом l, то формы электронных облаков не могут быть произвольными: каждому возможному значению l соответствует вполне определенная форма электронного облака.
Рис 7. К понятию об орбитальном моменте количества движения.
Рис. 8. К понятию о размерах и форме электронного облака
Мы уже знаем, что энергия электрона в атоме зависит от главного квантового числа n. В атоме водорода энергия электрона полностью определяется значением n.
- 75 -
Однако в многоэлектронных атомах энергия электрона зависит и от значения орбитального квантового числа l; причины этой зависимости будут рассмотрены в § 31. Поэтому состояния электрона, характеризующиеся различными значениями l, принято называть энергетическими подуровнями электрона в атоме. Этим подуровням присвоены следующие буквенные обозначения:
В соответствии с этими обозначениями говорят об s-подуровне, p-подуровне и т.д. Электроны, характеризующиеся значениями побочного квантового числа 0, 1, 2 и 3, называют соответственно s-электронами, p-электронами, d-электронами и f-электронами. При данном значении главного квантового числа n наименьшей энергией обладают s-электроны, затем p-, d- и f- электроны.
Состояние электрона в атоме, отвечающее определенным значениям n и l, записывается следующим образом: сначала цифрой указывается значение главного квантового числа, затем буквой — орбитального квантового числа. Так, обозначение 2p относится к электрону, у которого n=2 и l=1, обозначение 3d к электрону, у которого n=3 и l=2.
Электронное облако не имеет резко очерченных в пространстве границ. Поэтому понятие о его размерах и форме требует уточнения. Рассмотрим в качестве примера электронное облако 1s-электрона в атоме водорода (рис. 8). В точке а, находящейся на некотором расстоянии от ядра, плотность электронного облака определяется квадратом волновой функции ψa2. Проведем через точку а поверхность равной электронной плотности, соединяющую точки в которых плотность электронного облака характеризуется тем же значением ψa2. В случае 1s-электрона такая поверхность окажется сферой, внутри которой заключена некоторая часть электронного облака (на рис. 8 сечение этой сферы плоскостью рисунка изображено окружностью, проходящей через точку а). Выберем теперь точку b, находящуюся на б'ольшем расстоянии от ядра, и также проведем через нее поверхность равной электронной плотности. Эта поверхность тоже будет обладать сферической формой, но внутри ее будет заключена б'ольшая часть электронного облака, чем внутри сферы а. Пусть, наконец, внутри поверхности равной электронной плотности, проведенной через некоторую точку с, заключена преобладающая часть электронного облака; обычно эту поверхность проводят так, чтобы она заключала 90% заряда и массы электрона. Такая поверхность называется граничной поверхностью, и именно ее форму и размеры принято считать формой и размерами электронного облака. Граничная поверхность 1s-электрона представляет собой сферу, однако граничные поверхности p- и d-электронов имеют более сложную форму (см. ниже).