- 121 -
Поэтому наличие или отсутствие дипольного момента у молекулы типа АВ2 позволяет сделать вывод о нее геометрическом строении. Например, то, что молекула CO2 неполярна, а молекула SO2 обладает дипольным моментом (μ = 1,61 D), свидетельствует о линейном строении первой молекулы и об угловом строении второй.
На рис. 31 изображены схемы возможно строения молекулы типа АВ3. Если молекула построена в форме плоского треугольника (рис. 31, а), то векторная сумма дипольных моментов отдельных связей равна нулю — молекула неполярна. Если молекула имеет пирамидальное строение (рис. 31, б), то ее суммарный дипольный момент отличается от нуля — молекула полярна. Таким образом, можно сделать вывода, что молекула BF3, дипольный момент которой равен нулю, имеет плоское строение, а полярная молекула NH3 (μ = 1,46 D) построена в форме пирамиды*.
* Следует иметь в виду, что на величину дипольного момента молекулы влияет не только полярность отдельных связей и геометрическая структура молекулы, но и наличие неподеленных электронных пар на гибридных орбитах (см. стр. 132-133).
Полярность молекул оказывает заметное влияние на свойства образуемых ими веществ. Полярные молекулы стремятся ориентироваться по отношению друг к другу разноименно заряженными концами. Следствием такого диполь-дипольного взаимодействия является взаимное притяжение полярных молекул и упрочнение связи между ними. Поэтому вещества, образованные полярными молекулами, обладают, как правило, более высокими температурами плавления и кипения, чем вещества, молекулы которых неполярны.
Рис. 31. Дипольные моменты отдельных связей в молекулах типа АВ3:
а — плоский треугольник; б — пирамида; жирной стрелкой показан вектор суммарного дипольного момента молекулы.
При растворении вещества, состоящего из полярных молекул или имеющих ионное строение, в жидкости, также составленной из полярных молекул, между молекулярными диполями растворителя и молекулами или кристаллами растворяемого вещества возникают электростатические силы диполь-дипольного или ион-дипольного взаимодействия, способствующие распаду растворяемого вещества на ионы (см. § 83). Поэтому жидкости, состоящие из полярных молекул, проявляют свойства ионизирующих растворителей, т.е. способствуют электролитической диссоциации растворенных в них веществ.
- 122 -
Так, хлороводород растворяется и в воде, и в бензоле, но его растворы в воде хорошо проводят электрический ток, что свидетельствует о практически полной диссоциации молекул HCl на ионы, тогда как растворы HCl в бензоле не обладают заметной электрической проводимостью.
41. Способы образования ковалентной связи.
Как уже говорилось, общая электронная пара, осуществляющая ковалентную связь, может образоваться за счет неспаренных электронов, имеющихся в невозбужденных взаимодействующих атомах. Это происходит, например, при образовании таких молекул, как H2, HCl, Cl2. Здесь каждый из атомов обладает одним неспаренным электроном; при взаимодействии двух таких атомов создается общая электронная пара — возникает ковалентная связь.
В невозбужденном атоме азота имеются три неспаренных электрона:
Следовательно, за счет неспаренных электронов атом азота может участвовать в образовании трех ковалентных связей. Это и происходит, например, в молекулах N2 или NH3, в которых ковалентность азота равна 3.
Однако число ковалентных связей может быть и больше числа имеющихся у невозбужденного атома неспаренных электронов. Так, в нормальном состоянии внешний электронный слой атома углерода имеет структуру, которая изображается схемой:
За счет имеющихся неспаренных электронов атом углерода может образовать две ковалентные связи. Между тем для углерода характерны соединения, в которых каждый его атом связан с соседними атомами четырьмя ковалентными связями (например, CO2, CH4 и т.д.). Это оказывается возможным благодаря тому, что при затрате некоторой энергии можно один из имеющихся в атоме 2s-электронов перевести на подуровень 2p; в результате атом переходит в возбужденное состояние, а число неспаренных электронов возрастает. Такой процесс возбуждения, сопровождающийся «распариванием» электронов, может быть представлен следующей схемой, в которой возбужденное состояние отмечено звездочкой у символа элемента: