2 SO42– – 4e → 2 SO3 + O2
В водных растворах кроме ионов самого электролита находятся также молекулы воды и ионы H+ и OH–, способные участвовать в электродных процессах. В этом случае при электролизе возможны конкурирующие реакции. Критерием, определяющим преимущество того или иного электродного процесса, служит величина его электродного потенциала *. Чем выше потенциал, тем легче (при меньшей отрицательной поляризации электрода) происходит восстановление на катоде и труднее (при большей положительной поляризации электрода) осуществляется окисление на аноде.
Минимальный потенциал, при котором процесс электролиза становится возможным, называется потенциалом (напряжением) разложения или выделения. Его находят вычитанием электродного потенциала катиона из соответствующего значения электродного потенциала аниона. Например, потенциал разложения хлорида цинка равен E°(Cl2/2Cl–) – E°(Zn2+/Zn)=1,36–(–0,76)=2,12 В. Эта разность потенциалов, или ЭДС * внутреннего гальванического элемента *, возникающего в результате выделения на электродах * продуктов электролиза, имеет направление, противоположное внешней ЭДС, которая служит источником тока. Поэтому электролиз возможен при условии компенсации внутренней ЭДС внешним напряжением. Часто реально необходимый потенциал разложения электролита оказывается больше теоретической величины. Эта разность называется перенапряжением.
При электролизе водного раствора на катоде могут восстанавливаться: 1) Ионы металлов, например Cu2+; 2) ионы водорода в кислой среде: 2H+ + 2e → H2 (E°=0 при pH=0 и E°= –0,41В при pH=7); 3) молекулы воды в нейтральной и щелочной среде: 2H2O + 2e → H2 + 2OH– (E°= –0,41В при pH=0 и E°= –0,83В при pH=14);. Из этих значений электродных потенциалов следует, что при электролизе растворов солей меди, как и всех металлов, стоящих после водорода в ряду напряжений *, на катоде выделяются эти металлы. В нейтральных растворах возможно также выделение и тех металлов, потенциал которых имеет отрицательное значение, но не ниже, чем –0,41В.
При электролизе водного раствора на аноде могут окисляться: 1) Анионы электролита; 2) молекулы воды в нейтральной и кислой среде: 2H2O – 4e → 4H+ + O2 (E°=1,23В); 3) ионы OH– в щелочной среде: 4OH– – 4e → 2H2O + O2 (E°=0,40В); 4) материал анода (например, медь).
Из растворов, содержащих смесь катионов, происходит последовательное выделение металлов в порядке уменьшения величины их электродных потенциалов *. Если в растворе находятся ионы металлов, стоящих в начале ряда напряжений * примерно до Ti (E°= –1,63В), то на катоде[71] выделяется водород. Металлы, электродные потенциалы которых не сильно отличаются от водородного, выделяются на катоде одновременно с водородом (приблизительно от цинка до олова). В зависимости от условий электролиза массовые соотношения металла и водорода могут быть различными, вплоть до фактического выделения только одного металла. Такая затрудненность выделения водорода называется водородным перенапряжением, Это явление играет большую роль во многих электрохимических процессах. Водородное перенапряжение увеличивается с повышением плотности тока i (сила тока на 1 см2 площади электрода), уменьшается с повышением температуры и зависит от материала катода. Наименьшим оно будет на платине и при небольшой плотности тока практически равно нулю, наибольшим – на ртути и свинце (при i=1А/см2 1,41 и 1,56В соответственно). В результате на свинцовом катоде практически выделяется только свинец, что позволяет проводить его очистку электролизом. На ртутном катоде из нейтральных водных растворов удается восстанавливать даже натрий. Его выделению способствует также образование амальгамы, равновесный потенциал которой значительно менее отрицателен, чем электродный потенциал металлического натрия.
Среди процессов, протекание которых возможно на аноде[72], в первую очередь осуществляется тот, электродный потенциал которого имеет наиболее низкое значение. Так, окисление анионов кислородсодержащих кислот (SO42–, CO32–, PO43–, NO3– и т.п.) в водном растворе невозможно, т.к. полуреакции окисления воды или ионов OH– с выделением кислорода характеризуются более низкими значениями потенциалов. Окисление галогенид-ионов (кроме F–) в водном растворе происходит с образованием свободных галогенов.
Из-за кислородного перенапряжения при электролизе водных растворов хлоридов на аноде выделяется не кислород, а хлор, хотя его стандартный электродный потенциал (1,36В) имеет большее значение по сравнению с кислородным E°(O2+4H+/2H2O)=1,23В.
7.2.2 Законы электролиза
Количественные характеристики электролиза * выражаются двумя законами Фарадея:
1) Масса вещества, выделяющегося на электроде *, прямо пропорциональна количеству электричества, прошедшего через электролит *.
2) При электролизе различных химических соединений одинаковые количества электричества выделяют на электродах массы веществ, пропорциональные их электрохимическим эквивалентам.
Эти два закона можно объединить в одном уравнении:
,
где m – масса выделяющегося вещества, г;
n – количество электронов, переносимых в электродном процессе;
F – число Фарадея (F=96485 Кл/моль)
I – сила тока, А;
t – время, с;
M – молярная масса выделяющегося вещества, г/моль.
Величина называется электрохимическим эквивалентом вещества. Если продолжительность электролиза измерять в часах, то число Фарадея должно быть выражено в ампер-часах. В этом случае F=26,8 А·ч/моль.
Вследствие параллельных побочных процессов масса вещества, получаемого при электролизе, оказывается часто меньше той, которая соответствует количеству прошедшего электричества. Отношение массы вещества, реально выделенного на электроде, к теоретической и умноженное на 100%, называют выходом по току: .
8 КОРРОЗИЯ МЕТАЛЛОВ И МЕТОДЫ ЗАЩИТЫ МЕТАЛЛОВ ОТ КОРРОЗИИ
8.1 ВВЕДЕНИЕ
Коррозией называют процессы разрушения металлов при их контакте с окружающей средой. При этом металл переходит в окисленное (ионное) состояние и теряет присущие ему свойства. По имеющимся литературным данным, примерно 10% ежегодной добычи металлов расходуется на покрытие потерь от коррозии. Возможны два вида коррозии: химическая и электрохимическая.
Химическая коррозия обусловлена взаимодействием металлов с сухими газами и жидкими неэлектролитами в условиях, когда влага на поверхности металла отсутствует, и электродные процессы на границе раздела фаз * не возникают. Практически очень важной разновидностью химической коррозии является газовая – взаимодействие металлов при повышенных температурах с такими активными газообразными веществами, как O2, H2S, SO2, галогены, водяные пары и др.
Электрохимическая коррозия является результатом протекания сопряженных электродных процессов и возникает при контакте металлов с электролитами * (на воздухе, в почве, в растворах электролитов и т.п.).
8.2 ЭЛЕКТРОХИМИЧЕСКАЯ КОРРОЗИЯ
71
Катодом в электрохимии называется электрод, на котором протекает полуреакция восстановления (принятие электронов).
72
Анодом в электрохимии называется электрод, на котором протекает полуреакция окисления (отдача электронов).