Выбрать главу

Самая очевидная и важная характеристика аварий с возникновением СЦР, случившихся при проведении технологических операций, состоит в том, что во всех авариях, кроме одной, участвовали растворы или суспензии. Это можно приписать нескольким факторам: относительно малым количествам делящегося материала, требуемым для достижения критического состояния при хорошем замедлении нейтронов; высокой подвижности растворов и легкости, с какой реактивность в них отслеживает изменение формы сосудов; потенциальной возможности изменения концентрации; и, в нескольких случаях, обмену делящимся материалом между водной и органической фазами. К счастью, вместе с частотой аварий в растворах, имеется хорошее понимание механизмов гашения и присущего растворам ограничения плотности энергии деления.

Хотя и нельзя оставлять без внимания твердые делящиеся материалы, интересы безопасности могут сконцентрироваться главным образом на изучении поведения растворов, для которых вопрос обеспечения ядерной безопасности более труден. В то время как нынешняя практика основана на средствах ядерной безопасности, встроенных в технологическое оборудование, чрезвычайно трудно достигнуть полной независимости от административного контроля. Исследования механизмов реальных и моделированных аварий дают понимание методов, могущих смягчить последствия маловероятной аварии, коль скоро она произойдет. Один из таких методов состоит в том, чтобы ввести соответствующие сильные нейтронные источники внутрь аппарата, который по необходимости имеет опасную геометрию и получает раствор обычно с концентрациями недостаточными, чтобы поддерживать критичность, и не имеет значительного собственного источника нейтронов. Эксперименты CRAC 5 ясно демонстрируют эффективность такого источника для ограничения высоты первых пиков вспышки мощности.

В дополнение к пониманию, полученному в результате изучения технологических аварий и разгонов в реакторах и в критических сборках, происходивших с участием растворов, большое количество информации доставляет серия экспериментов по изучению контролируемых всплесков мощности в растворах. Представляют интерес проведенные в США серии экспериментов KEWB 6, 89, 90, 91 (кинетические эксперименты в кипящих реакторах), в то время как эксперименты CRAC 5, проводимые во Франции Отделом изучения критичности Комиссариата по атомной энергии (Service d'Etudes de Criticite of the Commissariat a l'Energie Atomique), непосредственно используются для оценок последствий аварий. Эти программы, в которых используются растворы высокообогащенного урана, дополняются серией измерений, проведенных в Лос-Аламосской национальной лаборатории с помощью сборки SHEBA 92. Эта сборка заполнена раствором обогащенного до 5 % урана, который дает информацию о мощности дозы при всплесках мощности в системах с низким обогащением урана. Анализ результатов экспериментов KEWB 6 и CRAC 5 привел к разработке относительно простых компьютерных программ, которые хорошо описывают переходное поведение на ранней стадии и в качестве механизмов гашения принимают тепловое расширение и образование газа вследствие радиолиза.

Параметры СЦР в твердой активной зоне с замедлителем изучались по экспериментальным программам SPERT 93, 94, 95 и TRIGA 96, 97, в то время как очень быстрая кинетика переходного процесса в простых металлических системах без замедлителя хорошо понята в результате исследований на критической сборке «Годива» и на подобных реакторах с быстрыми всплесками мощности.

Механизмы гашения, ясно проявившиеся в вышеуказанных экспериментальных исследованиях и прекратившие многие аварийные выбросы мощности, включают в себя тепловое расширение, кипение, эффект Доплера 98 на 238U и образование пузырьков радиолитического газа. Они перечислены здесь не в порядке их важности, и не все они независимы. Вдобавок, в некоторых ситуациях вклад в гашение или прекращение всплеска мощности вносит более чем один механизм; во многих случаях появляются также дополнительные механизмы гашения, когда плотность энергии или температура достигают некоторого порогового значения. Эта проблема имеет разнообразные и многочисленные ответвления, но самый простой и наиболее общий из применимых механизмов используется в энергетической модели 99,100,101, в которой изменение реактивности пропорционально выделяемой энергии деления.