Выбрать главу

2. Распределение прибыли, доходов и рост

Многие книги по оценке пишутся с целью доказать преимущества одних формул или механически применяемых действий по сравнению с другими. Сторонники моделей дисконтированных денежных потоков (DCF), экономической добавленной стоимости (EVATM), денежной доходности инвестиций (CFROI), дисконтирования дивидендов и остаточного дохода готовы вступить в бой за превосходство своего метода. Мы подробнее остановимся на каждом из методов, но основная наша цель не в этом. Мы расскажем о подходах, по нашему мнению, более предпочтительных для оценки компаний определенного вида. Но об одном принципиальном моменте следует сказать с самого начала: при правильном применении все основные методы оценки должны давать одинаковые результаты для одной компании. Результат не должен зависеть от того, рассматривается денежный поток или экономическая прибыль, или денежный поток соотносится с инвестированным или акционерным капиталом компании.

Механизм получения оценки компании на основе прогнозов очень важен. Но важнее знать, как строятся прогнозы, как историческая финансовая отчетность согласуется с прогнозами. Такие взаимосвязи, по нашему убеждению, часто игнорируются или понимаются неверно.

Для начала несколько упростим картину. Возьмем компанию, на балансе которой нет долговых обязательств. Каждый год она (как мы надеемся) получает некоторую прибыль. Размер прибыли определяется после вычитания денежных затрат (себестоимость реализованной продукции, заработная плата, налоговые выплаты и прочие расходы) и отчислений (резервов) на возмещение износа основных средств. Эти резервы известны как амортизация. Таким образом, в нашем очень простом примере входящий денежный поток компании равен сумме чистой прибыли и амортизации. Исходящий поток составляют: капитальные затраты, увеличение оборотного капитала (материальные запасы и счета к получению за вычетом счетов к оплате), а также дивиденды, распределяемые среди акционеров.

Предположим, что у компании не будет долгов и денежных средств на балансе. Таким образом, объем дивидендов каждый год должен равняться денежному потоку за вычетом капитальных затрат и изменения оборотного капитала (свободный денежный поток). В табл. 1.1 приведены отчет о прибылях и убытках, бухгалтерский баланс и отчет о движении денежных средств компании «Постоянный рост К°».

Теперь представим, что мы знаем ставку дисконтирования для потока дивидендов (свободного денежного потока), которые ожидаем получить от компании. Чтобы преобразовать все будущие денежные потоки в текущие значения, мы можем использовать стандартную формулу дисконтирования:

PV = CFt / (1+k)t,

где PV – текущая стоимость денежного потока в году t (CFt), дисконтированного по ставке, равной стоимости акционерного капитала (k).

Заранее не известно, когда может прекратиться деятельность компании. Поэтому в отличие от того, как поступают с облигациями, мы дисконтируем денежный поток, продолжающийся до бесконечности. Это одна из проблем, возникающих при оценке акций. Другая состоит в том, что даже среднесрочные изменения денежных потоков сложно предвидеть. Таким образом, если мы не хотим прибегать к использованию бесконечно длинных таблиц, в какой-то момент нужно остановиться и предположить, что начиная с этой точки темп роста компании будет постоянным. Он может быть отрицательным, нулевым или положительным, но обычно принимается положительным.

Как можно рассчитать текущую стоимость потока, который будет расти бесконечно (рис. 1.1)?

Проблема заключается в том, что каждый прогнозируемый показатель больше предшествующего. Но решение есть. Если ставка дисконтирования больше темпа роста, то дисконтированный поток дивидендов к текущим (приведенным) значениям будет уменьшаться (рис. 1.2).

Приведенные значения уменьшаются, поэтому они меньше влияют на результат. Существует простая формула определения величины, к которой стремится сумма текущих значений, когда поток дивидендов не ограничен во времени. Она известна как модель роста Гордона и записывается следующим образом:

V = D × (1 + g)/(k – g),

где V – текущая стоимость, D – величина дивидендов последнего года, g – темп роста и k – ставка дисконтирования. Очевидно, данная модель дает разумный результат, если ставка дисконтирования превышает темп роста (k>g). (Доказательство модели Гордона дано в приложении.) Поскольку модель Гордона является общей формулой для оценки бесконечных потоков с постоянным темпом роста, она применима в равной степени для оценки как потока дивидендов, так и генерируемого денежного потока.