Выбрать главу

В принципе возможно симметричное распределение, при котором средняя величина не приближается к истинному значению, хотя такое распределение не имеет ничего общего с нормальным и вряд ли может встретиться на практике. Заметим, что при симметричном бимодальном распределении оценка средним состоятельна. При нормальном распределении состоятельна также и оценка дисперсии.

Несмещенность означает отсутствие систематических отклонений оценки от параметра при любом конечном, в том числе и малом, объеме выборки. Использование статистической оценки, математическое ожидание которой не равно оцениваемому параметру, приводит к систематическим ошибкам, поскольку реальная выборка всегда конечна. При нормальном распределении оценка истинного значения средним является несмещенным, а оценка дисперсии по обычной формуле (сумма квадратов отклонений от среднего, деленная на число измерений) нет: при одном измерении она дает очевидную глупость — ноль. Поэтому формула корректируется, деление на число измерений заменяется на деление на число измерений минус один.

Эффективность оценки означает, что если извлекать из генеральной совокупности разные серии наблюдений, то полученные из них оценки какого-то параметра будут иметь минимальную дисперсию по сравнению с другими методами оценки.

В обычной ситуации часто имеет место распределение, близкое к нормальному. Иногда рассматривают другие распределения — равномерное, арксинусное, треугольное и другие, которые разумно сочетают соответствие реальности и удобство вычислений. Отклонения от нормального распределения, хоть большие, хоть вовсе неунимодальность, воспринимаются физиком как «Пионерская зорька» — то есть как указание на действие какого-то механизма, который можно попытаться определить. В частности неунимодальность может быть следствием неустойчивости, а может быть результатом смешения двух распределений.

Функция распределения определяется тем точнее, чем большим количеством измерений мы располагаем. Но чем больше измерений — тем дороже процедура и вообще, длительные измерения это не очень хорошо — сам объект может измениться (хотя растет шанс это заметить!), да и потребность в результате обычно связана с временем получения оного. Поэтому «все прогрессивное человечество» день и ночь размышляет, как по небольшому количеству измерений определить функцию распределения. Существует несколько способов оценить, удовлетворяет ли полученный набор данных той или иной функции распределения, есть несколько так называемых «критериев согласия»: хи-квадрат (Пирсона), Колмогорова, моментов. Само наличие нескольких критериев согласия говорит о гуманитарности всех таких оценок. Практическое же применение в значительной степени опирается на опыт, практику в конкретной области, «чутье».

Любой прибор имеет диапазон измерений, и на практику случаются (чаще в социологии) ситуации, когда диапазон охватывает только основную область измерений. В социологии крайние выборы на шкале бывают сформулированы не в виде диапазона, а в виде одностороннего ограничения. Например, «ваш доход за прошлый месяц — до 100, 101–300, 301-1000, 1001–3000, более 3001». В этом-то случае количества выбравших тот или иной ответ — это просто интегралы по соответствующим диапазонам, но вот более сложный случай. Пусть мы проводим экзамен и вот количества решивших то или иное количество задач: 0 задач — 10, 1, 2, 6 и 7 задачи — по 1, 3 и 5 задач — по 3, 4 задачи — 10, 8 задач — 0. Означает ли это, что у нас бимодальное распределение с медианами 0 и 5? Нет, это означает, что трудности задач были таковы, что именно эти количества респондентов рашали именно эти количества задач. Определение набора оптимальных по трудности задач, исходя из априорной (скорее всего — нормальной) функции распределения и конкретных требованиях по отбору (обычно — разбиение на группы, часто на две) — нерешенная задача. Скорее всего, решить ее в такой постановке и невозможно, ибо понятие трудности задачи не универсально: задача описывается не одним параметром.

В реальной ситуации могут встретиться и неунимодальное распределение, поскольку как в медицине, так и в технике случаются фиксированные «поломки», формирующие свою функцию распределения, скорее всего — нормальную, но с другим средним значением.