Примечание 1: лучше жить человек будет не на $ 100, а именно на 10 %, потому что дополнительная сумма скорее размажется по всем статьям расходов, чем пойдет только на увеселения. Примечание 2: человек в разных сферах деятельности может придерживаться разного подхода, например, третьего на работе и в расходах и первого или второго (я — скорее второго) в личной жизни.
В метрологии применяется еще термин «приведенная погрешность». Представим себе, что вольтметр измеряет напряжения от 0 до 250 В, причем погрешность постоянна и равна 5 В. В этом случае абсолютная погрешность и будет 5 В, относительная зависит от реально измеряемой величины (2 % — если 250 В, 5 % — если 100 В, 10 % — если 50 В, чуете, что будет дальше?), а приведенная погрешность будет именно 2 %: это относительная погрешность на конце шкалы. Если шкала прибор начинается не с 0, то берется не конец, а разность конца и — а вы как думаете? — начала.
Погрешности: классификация по «устройству»
Источников погрешностей великое множество, но большинство из них действует либо сдвигая измеряемую величину на сколько-то, либо умножая ее на сколько-то. При этом умножение может быть и на величину, меньшую единицы, то есть не «умножая», а «умаляя». Примечание это необходимо потому, что в не столь давние времена церковь сильно возражала против дробей, поскольку при умножении на некоторые дроби величина не «умножалась», а «умалялась». Поскольку не известно, не будет ли к моменту издания этой книги РПЦ рулить преподаванием метрологии, сделано это примечание.
Так вот, первая погрешность называется аддитивной, а вторая мультипликативной. А смешанная погрешность называется почему-то смешанной. Видимо, метрологам не хватило знания латыни.
Но главное деление погрешностей — это деление на систематические и случайные. Смысл кажется вполне понятным из названий, но на самом деле он не понятен. Если верить физике, то истинно случайное — это область действия квантовых закономерностей, от обычной метрологии это достаточно далеко (хотя эталоны все больше становятся квантовыми). Хочется сказать крамолу — что случайные погрешности — это просто погрешности, причина которых нам не ясна. Отчасти это так, но важно еще то, что у того, что мы называем случайными погрешностями, обычно много сравнимых по мощности причин, действующих независимо. Это не случайно — если бы какая-то причина превалировала, мы бы ее раскусили и объявили систематической. А если причин много и они сравнимы и независимы, то формируется определенная картина: распределение погрешностей подчиняется так называемому «нормальному распределению», симметричной функции определенной формы. Симметричность позволяет путем вычисления среднего многократных измерений уменьшать погрешность, а знание функции распределения позволяет оценить достижимую точность.
Можно представить себе ситуацию случайной несимметричной погрешности. Скажем, данный прибор сильнее завышает, нежели занижает показания. Тогда, измерив 220 вольт, мы будем вынуждены сказать, что напряжение равно 220 + 5 — 10 В, то есть лежит на отрезке 210–225. Конечно, такая ситуация уже менее случайна, нежели стандартная «случайная» и человечьим голосом просит — разберитесь во мне, определите мой источник.
Систематические погрешности, увеличивающиеся со временем, называют систематическими прогрессирующими. При чем здесь слово «прогресс» не понятно.
Наше знание того, что при тех или иных измерениях имеет место систематическая погрешность, часто, хотя и не всегда сопряжено с пониманием источника этих погрешностей. Например, систематическая погрешность может быть обнаружена сравнением с более точным прибором. Однако понимание источника погрешности, даже если оно и есть, не всегда означает, что мы можем всегда исключить ее на уровне прибора — и тогда приходится либо исключать ее вычислительно, вводя поправки, либо прибегать к специфическому методу измерений — методу замещения. При этом измеряемая величина и эталон по очереди «измеряются» прибором, который может быть не точнее, хотя и должен быть стабилен.
В заключение этого раздела отметим следующее. Стандартной процедурой в естественных науках является поиск закономерностей. Мы получаем набор чисел, чаще всего — зависимость некой функции от одной или нескольких переменных, и имеем в виду подобрать функцию, описывающую эти данные. Функция обычно подбирается в некотором классе (синусоиды, экспоненты, многочлены), причем выбор класса делается, исходя из наших исходных представлений о зависимости. Так вот, при подборе функции не имеет смысла делать так, чтобы полученные данные объяснялись точно — потому, что в этих «данных» смешаны действительные значения и погрешности. Подбор функций должен делаться так, чтобы она прошла через экспериментальные точки с учетом «полей допуска», то есть зацепила соответствующие прямоугольнички (x, ''x, y, ''y). Причем человеку свойственно преувеличивать достигнутую им точность. Поэтому Л.Д.Ландау говорил, что если вы провели зависимость через экспериментальные точки и собираетесь эту зависимость интерпретировать, то увеличьте погрешность в три раза и посмотрите — сохранится ли ваша интерпретация.
Характеристики: метрологические и не очень
У метрологического оборудования и приборов есть общетехнические и метрологические характеристики. Общетехнические — вес, объем, надежность, потребляемая мощность, ремонтопригодность, патентная чистота, приятность для взора, стоимость и другие. Все то, что можно сказать о любом техническом объекте или о большинстве из них.
Метрологические характеристики: какая величина измеряется; диапазон (или диапазоны) измерений; цена деления; все и всяческие погрешности — систематическая, аддитивная, мультипликативная, случайная; условия измерения и чувствительность к влияниям; динамические характеристики — время установления показаний, «мертвое время», частота замеров, гистерезис; для преобразователей — функция преобразования и ее стабильность; для цифровой техники — характеристики входного и выходного кода (число разрядов, цена единицы).
Обработка результатов измерений
Нет данных без обработки и нет обработки без предварительной информации. Когда мы измеряем тестером напряжение в сети, мы немедленно делаем свой вывод — «нормально» или «низковато для этого времени суток» или «почему так много, тестер барахлит, что ли». Обработка очевидна, причем довольно сложная. За счет чего она производится? За счет предварительной информации, что тоже очевидно.
Ситуации с многократными измерениями можно разделить на две группы. Первая — это когда мы многократно измеряем реально одну и ту же величину, например, вес одной и той же монетки. Полученный в этом случае разброс является свойством именно прибора. Вторая ситуация — когда мы изучаем разные «предъявления» одной и той же величины, но реально она может при разных предъявлениях оказаться и разной. Например, мы должны навести телескоп на звезду и проверяем, с какой ошибкой он наводится. В этом случае разброс результатов измерения складывается из разброса наведения («предъявления») и разброса прибора. Можно, впрочем, с некоторой натяжкой считать, что за весами разных реальных монеток стоит одна (идеальная) величина — номинальный вес. Особенность этой второй ситуации в том, что идеальная величина (номинальный вес или координаты звезды) нам известны, и мы изучаем «погрешности предъявления». При этом погрешности прибора должны быть существенно меньше, а вопрос об уменьшении погрешности «предъявления» стоит — но не перед нами. А перед разработчиками телескопа или штампа для монеток и монетного сплава. В первом случае можно задать вопрос о возможности уменьшения погрешности измерения одним и тем же прибором, и ниже мы к этому вопросу вернемся.
Итак, важный вопрос практической метрологии — сколько измерений делать. Обычно в книгах по метрологии пишут, что измерения должны проводиться многократно и долго обсуждают, достаточно ли двадцати, или лучше тридцать, а когда нужно три сотни. Хотел бы я посмотреть… то есть совсем наоборот! — не хотел бы увидеть, как мои коллеги звонят в скорую психиатрическую помощь, ибо я на их глазах начал мерить напряжение в сети или ток анода больше двух раз. Да и два-то зачем? На практике количество измерений зависит от априорной информации, например в производстве при контроле процесса или партии изделий обычно делают одно измерение. Для совершенно нового объекта и если мы хотим детально изучить функцию распределения, количество измерений может доходить до тысячи, особенно если мы хотим отловить отступления функции распределения от нормальной и использовать эту информацию для улучшения измерений. Обычная метрологическая рекомендация — делать измерения около тридцати раз, при этом статистические оценки обретают устойчивость. Хотя сама «устойчивость» понимается полуинтуитивно.