• возможность работать в режимах: с плавающей и фиксированной запятой, в двоичной и десятичной системах счисления, выполнение операций со словами фиксированной и переменной длины, что позволяло эффективно решать, как планово-экономические, информационные, так и научно-технические задачи;
• система аппаратного контроля устройств хранения, адресации, передачи, ввода и обработки информации;
• большая емкость оперативной памяти с непосредственной выборкой слов переменной длины, эффективные аппаратные средства контроля и защиты программ друг от друга, ступенчатая адресация, развитая система прерываний и приостановок;
• возможность подключения памяти большой емкости с произвольной выборкой на магнитных барабанах и дисках, наличие датчика времени, аппаратуры сопряжения с каналами связи и пультов операторов для связи с машиной, что давало возможность строить различные системы обработки информации коллективного пользования, работающие в режиме разделения времени.
Основные черты этого поколения машин были изложены еще в 1963-м году в проекте на семейство ЭВМ. Он появился на полтора года раньше публикаций об американском семействе машин IBM-360. Таким образом, идея создания семейства программно и конструктивно совместимых ЭВМ была опубликована Б.И. Рамеевым независимо от американских ученых и реализована практически одновременно. В отличие от первых моделей семейства IBM-360, семейство «Урал» обеспечивало возможность создания систем обработки информации, состоящих из нескольких одинаковых или разных машин, было рассчитано на работу в сетях и, наконец, было открытым для дальнейшего наращивания технических средств для конкретных систем. Семейство этих ЭВМ производилось серийно с 1964-го года и более десятка лет широко применялось на промышленных предприятиях в стране.
2.2. История стационарных универсальных, высокопроизводительных ЭВМ в 1960-е – 70-е годы
Наибольшее влияние на программирование в 70-е годы оказало появление машины БЭСМ-6 [2]. Ее автором был академик Сергей Алексеевич Лебедев – глава выдающейся отечественной научной школы в области вычислительной техники и программирования. В архитектуре этой машины было сделано много для аппаратной поддержки операционных систем: аппаратная поддержка виртуальной памяти; защита памяти; развитая структура двухуровневой системы прерываний; защищенный супервизорный режим и т. п. Все эти характеристики являлись неотъемлемым признаком современных процессоров, но во времена создания БЭСМ-6 это было необычным и новым. БЭСМ-6, разработанная в ИТМ и ВТ совместно с Московским заводом счетно-аналитических машин (САМ), начала выпускаться с 1968 года, а в 70-х годах была среди универсальных ЭВМ самой высокопроизводительной в мире.
Основная цель [2, 7], которую преследовали авторы проекта БЭСМ-6 – создать быстродействующую серийную машину, сравнительно дешевую, удовлетворяющую наиболее важным современным требованиям с точки зрения автоматизации программирования и развития операционных систем, оснащенную имевшимися в то время в отечественном серийном производстве внешними запоминающими устройствами и устройствами ввода-вывода. Машина БЭСМ-6 предназначалась для решения крупных научно-технических задач, что, естественно, отразилось как на ее архитектуре, так и на выборе системы элементов и конструкции. Она не являлась копией какой-либо отечественной или зарубежной установки ни по системе команд, ни по внутренней структурной организации. При ее создании и проектировании был изучен и проанализирован опыт создания ЭВМ высокой производительности, накопленный к тому времени. В БЭСМ-6 были реализованы новые архитектурные и схемотехнические решения, многие из которых отразились в появившихся потом машинах третьего поколения.
Машины БЭСМ-6 составили стратегическую основу вычислительных средств большинства крупных вычислительных центров и оборонных предприятий страны. Сфера использования машины превзошла прогнозы ее разработчиков. Первоначально предполагалось, что небольшая серия БЭСМ-6 будет использована для решения крупных научных задач в нескольких научных институтах Советского Союза и ядерных центрах. Реально эта машина нашла значительно более широкое применение. На основе БЭСМ-6 были созданы центры коллективного пользования, центры управления в реальном масштабе времени, координационно-вычислительные центры, системы телеобработки и т. д. Машина БЭСМ-6 широко использовались в системах автоматизации проектирования, для моделирования сложнейших физических процессов и процессов управления, как инструментальная машина для разработки крупных программных продуктов оборонных систем и различных новых ЭВМ.
Важной особенностью машины явились аппаратные и программные средства для обеспечения мультипрограммного режима. К ним относятся виртуальная адресация памяти со страничной организацией, система прерывания и соответствующие программы операционной системы, наличие нескольких режимов выполнения команд в процессоре. Высокая скорость преобразования виртуальных адресов в физические обеспечивалась размещением таблицы их соответствия в регистровой памяти. Имелись аппаратные механизмы защиты памяти для команд и операндов. Все это обеспечивало возможность динамического распределения памяти в процессе вычислений средствами операционной системы.
По уровню производительности и степени согласования аппаратных средств с архитектурой, а также архитектуры – с алгоритмами научно-технических задач, БЭСМ-6 может быть отнесена к классу суперЭВМ. БЭСМ-6 за счет многочисленных нововведений архитектурного и структурного плана при основной тактовой частоте 10 МГц выполняла в среднем один миллион операций в секунду над 48-разрядными операндами. В начале 60-х годов отечественной промышленностью были созданы высокочастотные транзисторы и диоды, на основе которых была разработана элементная база машины (в машине было использовано около 60 тыс. транзисторов и 180 тыс. диодов).
Назначение машины, ее архитектурные и структурные особенности, отвечающие современным идеям, потребовали создания соответствующей операционной системы и системы программирования, удовлетворяющих требованиям пользователей. БЭСМ-6 стала первой отечественной ЭВМ, которая была принята государственной комиссией и поставлялась как система аппаратных средств совместно с ее системным программным обеспечением (см. главу 3). Работы по исследованию и разработке операционных систем, стратегий распределения ресурсов и планирования вычислений в нашей стране начались широким фронтом с появлением БЭСМ-6 [7, 11].
В 1968-м году на Московском заводе счетно-аналитических машин (САМ) началось производство ЭВМ БЭСМ-6. Полностью новый компьютер на основе транзисторов и интегральных схем был разработан под руководством С.А. Лебедева, В.А. Мельникова и Л.Н. Королева. При его разработке была поставлена серьезная задача – достичь производительности порядка 1000000 операций в секунду (один мегафлоп). БЭСМ-6 сильно опередила свое время, став началом второго поколения ЭВМ. Она вобрала в себя много оригинальных идей. Систем подобного класса в мире не было. Одно из основных отличий и главных новшеств – «лебедевская водопроводная структура» процессора, позволяющая совмещать обработку различных команд на разных стадиях их выполнения.
Уже позже западные коллеги придумали для этого метода термин «конвейер» (все процессоры на сегодняшний день используют конвейерную архитектуру). Отныне к разным блокам памяти можно было обращаться одновременно, появился прообраз кэш-памяти – сверхбыстрое устройство хранения часто используемых данных и команд. Все эти улучшения обеспечили качественный скачок производительности. Коллеги и современники называли С.А Лебедева настоящим гением— при всей сложности собранной системы, он сумел отсечь все ненужное, оставив самые необходимые блоки. В период с 1968-го по 1987-й год было выпущено порядка 400 машин БЭСМ-6, которые использовали в самых разных, преимущественно оборонных отраслях. Важной особенностью БЭСМ-6 считается программное обеспечение – впервые с момента появления отрасли, ЭВМ начали поставлять с необходимым софтом прямо с завода. Для БЭСМ-6 была разработана полноценная операционная система, над ней трудились лучшие советские умы из Института прикладной математики АН СССР, Вычислительного центра Академии наук и Московского государственного университета (см. главу 3).