Выбрать главу

Man had to pay attention, then, to the cycle of seasons, and while he was still in the prehistoric stage he must have noted that those seasons came fall cycle in roughly twelve months. In other words, if crops were planted at a par ticular time of the year and all went well, then, ff twelve months were counted from the first planting and crops were planted again, all would again go well.

Counting the months can be tricky in a primitive so ciety, especially when a miscount can be ruinous, so it isn't surprising that the count was usually left in the hands of a specialized caste, the priesthood. The priests could not only devote their time to accurate counting, but could also use their experience and skill to propitiate the gods.

After all, the cycle of the seasons was by no, means as rigid and unvarying as was the cycle of day and night or the cycle of the phases of the moon. A late frost or a failure of rain could blast that season's crops, and since such flaws in weather were bound to follow any little mista e in ritual (at least so men often believed), the priestly func tions were of importance indeed.

It is not surprising then, that the lunar month grew to have enormous religious significance. There were new

Moon festivals and special priestly proclamations of each one of them, so that the lunar month came to be called the "synodic month."

The cycle of seasons is called the "year" and twelve lunar months therefore make up a "lunar year." The use of lunar years in measuring time is referred to as the use of a "lunar calendar." The only important group of people in modem times, using a strict lunar calendar, are the Moh ammedans. Each of the Moharmnedan years is made up of 12 months which are, in turn, usually made up of 29 and 30 days in alternation.

Such months average 29.5 days, but the length of the true lunar month is, as I've pointed out, 29.5306 days.

The lunar year built up out of twelve 29.5-day months is 354 days long, whereas twelve lunar months are actually 354.37 days long.

You may say "So what?" but don't. A true lunar year should always start on the day of the new Moon. If, how ever, you start one lunar year on the day of the new Moon and then simply alternate 29-day and 30-day months, the third year will start the day before the new Moon, and the sixth year will start two days before the new Moon. To properly religious people, this would be unthinkable.

Now it so happens that 30 true lunar years come out to be almost exactly an even number of days-10,631.016.

Thirty years built up out of 29.5-day months come to

10,620 days-just 1 1 days short of keeping time with the

Moon' For that reason, the Mohammedans scatter 1 1 days through the 30 years in some fixed pattern which prevents any individual year from starting as much, as a full day ahead or behind the new Moon. In each 30-year cycle there are nineteen 354-day years and eleven 355-day years, and the calendar remains even with the Moon.

An extra day, inserted in this way to keep the calendar even with the movements of a heavenly body, is called an

"intercalary day"; a day inserted "between the calendar," so to speak.

The lunar year, whether it is 354 or 355 days in length, does not, however, match the cycle of the seasons. By the dawn of historic times the Babylonian astronomers had noted that the Sun moved against the background of stars

(see Chapter 4). This passage was followed with absorp tion because it grew apparent that a complete circle of the sky by the Sun matched the complete cycle of the seasons closely. (This apparent influence of the stars on the sea sons probably started the Babylonian fad of astrology which is still with us today.)

The Sun makes its complete cycle about the zodiac in roughly 365 days, so that the lunar year is'about II days shorter than the season-cycle, or "solar year." Three lunar years fall 33 days, or a little more than a full month be hind the season-cycle.

This is important. If you use a lunar calendar and start it so that the first day of the year is planting time, then three years later you are planting a month too soon, and by the time a decade has passed you are planting in mid winter. After 33 years the first day of the year is back where it is supposed to be, having traveled through the entire solar year.

This is exactly what happens in the Mohammedan year. The ninth month of the Mohammedan year is named

Ramadan, and it is especially holy because it was the month in which Mohammed began to receive the revela tion of the Koran. In Ramadan, therefore, Moslems ab stain from food and water during the daylight hours.

But each year, Ramadan falls a bit earlier in the cycle of the seasons, and at 33-year intervals it is to be found in the hot season of the year; at this time abstaining from drink is particularly wearing, and Moslem tempers grow particularly short.

The Mohammedan years are numbered from the Hegira; that is, from the date when Mohammed fled from Mecca to Medina. That event took place in A.D. 622. Ordinarily, you nught suppose, therefore, that to find the number of the Mohammedan year, one need only subtract 622 from the number of the Christian year. This is not quite so, since the Mohammedan year is shorter than ours. I write this chapter in A.D. 1964 and it is now 1342 solar years since the Hegira. However, it is 1384 lunar years since the

Hegira, so that, as I write, the Moslem year is A.H. 1384.

I've calculated that the Mohammedan year will catch up to the Christian year in about nineteen millennia. The year A.D. 20,874 will also be A.H. 20,874, and the Moslems will then be able to switch to our year with a minimum of trouble.

But what can we do about the lunar year in order to make it keep even with the seasons and the solar year? We can't just add II days at the end, for then the next year would not start with the new Moon and to the ancient

Babylonians, for instance, a new Moon start was essential.

However, if we start a solar year with the new Moon and wait, we will find that the twentieth solar year there after starts once again on the day of the new Moon. You see, 19 solar years contain just about 235 lunar months.

Concentrate on those 235 lunar months. That is equiva lent to 19 lunar years (made up of 12 lunar months each) plus 7 lunar months left over. We could, then, if we wanted to, let the lunar years progress as the Moham medans do, until 19 such years had passed. At this time the calendar would be exactly 7 months behind the sea sons, and by adding 7 months to the 19th year (a 19th year of 19 months-very neat) we could start a new 19 year cycle, exactly even with both the Moon and the sea sons.

The Babylonians were unwilling, however, to let them selves fall 7 months behind the seasons. Instead, they added that 7-month discrepancy through the 19-year cycle, one month at a time and as nearly evenly as possible. Each cycle had twelve 12-month years and seven 13-montb years. The "intercalary month" was added in the 3rd, 6th, 8tb, I lth, 14th, 17th, and 19th year of each cycle, so that the year was never more than about 20 days behind or ahead of the Sun.

Such a calendar, based on the lunar months, but gim micked so as to keep up with the Sun, is a "lunar-solar calendar."

The Babylonian lunar-solar calendar was popular in ancient times since it adjusted the seasons while preserving the sanctity of the Moon. The Hebrews and Greeks both adopted this calendar and, in fact, it is still the basis for the Jewish calendar today. The individual dates in the

Jewish calendar are allowed to fall slightly behind the Sun until the intercalary month is added, when they suddenly shoot slightly ahead of the Sun. That is why holidays like

Passover and Yom Kippur occur on different days of the civil calendar (kept strictly even with the Sun) each year.

These holidays occur on the same day of the year each year in the Jewish calendar.

The early Christians continued to use the Jewish calen dar for three centuries, and established the dayof Easter on that basis. As the centuries passed, matters grew some what complicated, for the Romans (who were becoming

Christian in swelling numbers) were no longer used to a lunar-solar calendar and were puzzled at the erratic jump ing about of Easter. Some formula had to be found by which the correct date for Easter could be calculated in advance, using the Roman calendar.

It was decided at the Council of Nicaea, in A.D. 325 (by which time Rome had become officially Christian), that Easter was to fall on the Sunday after the first full Moon after the vernal equinox, the date of the vernal equinox being established as March 21. However, the full Moon referred to is not the actual full Moon, but a fic titious one called the "Paschal Full Moon" ("Paschal" being derived from Pesach, which is the Hebrew word for Passover). The date of the Paschal Full Moon is calcu lated according to a formula involving Golden Numbers and Dominical Letters, which I won't go into.

The result is that Easter still jumps about the days of the civil year and can fall as early as March 22 and as late as April 25. Many other church holidays are tied to Easter and likewise move about from year to year.

Moreover, all Christians have not always agreed on the exact formula by which the date of Easter was to be cal culated. Disagreement on this detail was one of the reasons for the schism between the Catholic Church of the West and the Orthodox Church of the East. In the early Middle

Ages there was a strong Celtic Church which had its own formula.

Our own calendar is inherited from Egypt, where sea sons were unimportant. The one great event of the year was the Nile flood, and this took place (on the average) every 365 days. From a very early date, certainly as early as 2781 B.C., the Moon was abandoned and a "solar calen 19 dar," adapted to a constant-length 365-day year, was adopted.

The solar calendar kept to the tradition of 12 months, however. As the year was of constant length, the months were of constant length, too-30 days each. This meant that the new Moon could fall on any day of the month, but the Egyptians didn't care. (A month not based on the Moon is a "calendar month.")

Of course 12 months of 30 days each add up only to 360 days, so at the end of each 12-month cycle, 5 addi tional days were added and treated as holidays.