Выбрать главу

Далеко не всегда «убивала» танк и куда более мощная, чем снаряд крейсера, авиационная бомба (рис. 2.8) — взрывчатка не могла компенсировать даже небольшие промахи по высокозащищенным целям и необходимостью стала специализация боеприпасов. В бронебойных догадались не рассеивать драгоценную энергию по всем направлениям, а наоборот — концентрировать ее в точке попадания, сделав ставку на меткий выстрел.

Рис. 2.8. Безрезультатная охота германского пикирующего бомбардировщика в пустыне Северной Африки. На «дичь» (танк «Шерман», американского производства) сброшена мощная (похоже — полутонная) бомба, но промах оказался таким, что цель не получила повреждений

Еще до войны была предложена профессором Герлихом «ультрапуля», напоминающая в разрезе гриб-поганку (рис. 2.9). В казенной части ствола была раскрыта юбка того гриба и потому действовало давление пороховых газов на большую площадь, ускоряя «ультрапулю» с большей силой. Но не только пуля была новшеством: канал ствола имел коническую форму и по мере движения, складывалась юбка и покидала ствол (кстати — со скоростью 1500–1700 м/с) уже не сомнительной внешности поганка, а компактное тело, с небольшим лобовым сопротивлением. Пробивали ультрапули броню вдвое большей своего калибра толщины, но сложны были в производстве конические стволы, и недолга их жизнь: то ли по причине износа, то ли потому, что опасное это дело — с ружьем, хоть и противотанковым — да на прямом выстреле…

Рис. 2.9. «Ультрапули» профессора Герлиха.

Показаны различные типы таких пуль и изменения их форм в процессе движения в коническом стволе. Справа — пули, снаряженные зажигательным составом, воспламенявшимся при пробивании брони. Бронепробитие таких пуль — пониженное по сравнению с цельнометаллическими, изображенными слева, зато заброневое действие — выше

В полевой артиллерии бронебойные снаряды были вначале просто болванками из стали — по калибру соответствующей пушки (рис. 2.10). В донной части некоторые из них имели небольшой заряд — чтобы было, чем «удивить» танкистов, преодолев броню — ведь взрыв в замкнутом пространстве гораздо опаснее для людей, чем на открытом воздухе. Такой снаряд мог пробить броню равной своему калибру толщины, да и то — при благоприятном угле встречи и на небольшой дистанции. Позже стали вставлять в снаряд сердечник закаленной стали — бронепробитие увеличилось, но не намного.

Рис. 2.10. Эволюция бронебойных снарядов к авиационной пушке калибром 23 мм.
Сверху вниз:
— цельнометаллический (есть только трассер);
— с сердечником из закаленной стали (головной обтекатель удален);
— экспериментальный, с отделяемым поддоном из алюминия и полиэтилена и оперенным «ломом»

Тогда облегчили пушке работу: разгонять она стала совсем легкий снаряд, а массу его сосредоточили в тяжелом «ломе», значительно меньшего, чем калибр ствола, диаметра. Чтобы газы не прорывались — заключили лом в легкий поддон, который сдувался после выстрела набегающим потоком воздуха (рис. 2.11). Ломы могли отразиться от брони (рикошетировать) или переломиться, но, если внедрялись («закусывали», рис. 2.12), то обеспечивали бронепробитие почти в три раза превышающее калибр орудия. Заброневое же действие подкалиберных снарядов основывалось не на взрыве, а на свойствах материала лома. Дело в том, что бронепробитие, понятно, сопровождается очень большой нагрузкой на лом, но по выходе из брони сжатие сменяется разрежением («разгрузкой»). Разрежение может «растащить» стальной цилиндр, превращая его в подобие полена, разваленного колуном (рис. 2.13), причем внутри «полена» сохранится структура, напоминающая древесные волокна. Разгрузкой при выходе из брони дробился и лом: куски его поражали аппаратуру и экипаж, а, если он был сделан из такого материала, как уран — эти осколки еще и горели…

Рис. 2.11. Выстрел из танковой пушки подкалиберным снарядом. В середине снимка видны отделившиеся части поддона, справа — газы выстрела
Рис. 2.12. Малый угол встречи и высококачественная сталь не помешали «лому» 105 мм израильского подкалиберного снаряда APFS-DS-T «закусить» и пробить ствол пушки сирийского танка Т-62 (советского производства)
Рис. 2.13. Стальной цилиндр, сжатый давлением взрыва, а затем «растащенный» волной разрежения («разгрузкой»)